Refine Your Search

Search Results

Journal Article

Research on Ultra-High Viscosity Index Engine Oil: Part 1 - “Flat Viscosity” Concept and Contribution to Carbon Neutrality

2022-03-29
2022-01-0525
In recent years, the realization of carbon neutrality has become an activity to be tackled worldwide, and automobile manufacturers are promoting electrification of power train by HEV, PHEV, BEV and FCEV. Although interest in BEV is currently growing, vehicles equipped with internal combustion engines (ICE) including HEV and PHEV will continue to be used in areas where conversion to BEV is not easy due to lack of sufficient infrastructures. For such vehicles, low-viscosity engine oil will be one of the most important means to contribute to further reduction of CO2 emissions. Since HEV requires less work from the engine, the engine oil temperature is lower than that of conventional engine vehicles. Therefore, the reduction of viscous resistance in the mid-to-low temperature range below 80°C is expected to contribute more to fuel economy. On the other hand, the viscosity must be kept above a certain level to ensure the performance of hydraulic devices in the high oil temperature range.
Technical Paper

Cradle to Grave Comparison on Emission Produced by EV and ICE Powertrains

2024-04-09
2024-01-2402
Since the popularization of the Electric Vehicle (EV) there has been a large movement of consumers, governments, and the automotive industry due to its environmentally friendly characteristics. Unlike an IC engine, the batteries use multitudes of rare earth minerals and complex manufacturing processes which in some cases have been shown to produce as many emissions as an ICE vehicle over its entire lifespan. Another unnoticed important environmental concern has been the final recycling and disposal of the power train after its use. Unlike an ICE engine, which can be melted down or re-used, recycling batteries are much more difficult. In most cases the recycling process and the byproducts produced can be very harmful to the environment. This paper aims to be a complete cradle-to-grave analysis of all emissions produced in the life of an EV battery.
Technical Paper

Optimized Tapered Roller Bearing Power Loss Equals Deep Groove Ball Bearings in Real-World Electric Vehicle Intermediate Shaft Tests

2024-04-09
2024-01-2440
One often reported roadblock to consumer acceptance of electric vehicles is driving range, which is a function of powertrain efficiency and vehicle mass. Electric vehicle gearbox design often is based on multiple parallel shafts, thereby creating significant packaging constraints. Industry perception holds that deep groove ball bearings (DGBB) are more efficient than tapered roller bearings (TRB), and standard spin-loss testing confirms those beliefs. However, spin-loss efficiency testing does not accurately reproduce typical real-world driving. A more realistic comparison of bearing efficiency is required to properly select bearings during the powertrain design stage. Recently completed testing focused on recreating application conditions (including bearing loads, speeds, misalignment, and load zones) for electric vehicle gearbox intermediate shafts.
Technical Paper

Digital Twin Modeling Using High-Fidelity Battery Models for State Estimation and Control

2024-04-09
2024-01-2582
Lithium-ion batteries (LIBs) play a vital role in the advancement of electric vehicles and sustainable energy solutions. They are favored over other secondary energy storage systems due to their high energy density, long cycle life, high nominal voltage, and low self-discharge rate. However, the latency of its internal states makes it difficult to predict its performance and ensure it is being operated safely. Fortunately, battery management systems (BMS) can use battery models to predict the internal states of a battery. There is a constant trade-off between accuracy and computational cost when it comes to battery models with only a handful being able to meet the constraints of a BMS. The following paper will showcase a Digital Twin framework that captures the accuracy of high-fidelity electrochemical models while meeting the computational constraints imposed by the BMS.
Technical Paper

Combustion Development and Efficiency Improvement for Hybrid Engines

2024-04-09
2024-01-2093
In the pursuit of carbon emission reduction, hybridization has emerged as a significant trend in powertrain electrification. As a crucial aspect of hybrid powertrain system development, achieving high brake thermal efficiency (BTE) and a wide operating range with high efficiency are essential for hybrid engines to effectively integrate with the hybrid system. When developing dedicated hybrid engines (DHE), several design considerations come into play. First, in order to make efficient use of available resources and enable engine production on the same assembly line as conventional engines, it is crucial to maintain consistency in key design parameters of the cylinder head and block, thus extending the platform-based design approach. Among the key measures to achieve high BTE, cooled exhaust gas recirculation (EGR) has been extensively explored and proven effective in improving efficiency by mitigating knocking and reducing engine cooling heat loss.
Technical Paper

Next Generation High Efficiency Boosted Engine Concept

2024-04-09
2024-01-2094
This work represents an advanced engineering research project partially funded by the U.S. Department of Energy (DOE). Ford Motor Company, FEV North America, and Oak Ridge National Laboratory collaborated to develop a next generation boosted spark ignited engine concept. The project goals, specified by the DOE, were 23% improved fuel economy and 15% reduced weight relative to a 2015 or newer light-duty vehicle. The fuel economy goal was achieved by designing an engine incorporating high geometric compression ratio, high dilution tolerance, low pumping work, and low friction. The increased tendency for knock with high compression ratio was addressed using early intake valve closing (EIVC), cooled exhaust gas recirculation (EGR), an active pre-chamber ignition system, and careful management of the fresh charge temperature.
Journal Article

Thermodynamic Modeling of Military Relevant Diesel Engines with 1-D Finite Element Piston Temperature Estimation

2023-04-11
2023-01-0103
In military applications, diesel engines are required to achieve high power outputs and therefore must operate at high loads. This high load operation leads to high piston component temperatures and heat rejection rates limiting the packaged power density of the powertrain. To help predict and understand these constraints, as well as their effects on performance, a thermodynamic engine model coupled to a finite element heat conduction solver is proposed and validated in this work. The finite element solver is used to calculate crank angle resolved, spatially averaged piston temperatures from in-cylinder heat transfer calculations. The calculated piston temperatures refine the heat transfer predictions as well requiring iteration between the thermodynamic model and finite element solver.
Technical Paper

Service Oriented Vehicle Diagnostic Communication and Regulations

2023-08-28
2023-01-5050
Next-generation vehicle electrical architectures will be based on highly sophisticated domain controllers called HPCs (high-performance computers). These HPCs are more alike gaming PCs than as the traditional ECUs (electronic control units). Today’s diagnostic communication protocol, e.g., UDS (Unified Diagnostic Services, ISO 14229-1) was developed for ECUs and is not fit to be used for HPCs. There is a new protocol being developed within ASAM, SOVD (service-oriented vehicle diagnostics), which is based on a RESTful API (REpresentational State Transfer Application Programming Interface) sent over http (hypertext transfer protocol). But OBD (OnBoard Diagnostic) under the emissions regulation is not yet updated for this shift of protocols and therefore vehicle manufacturers must support older OBD protocols (e.g., SAE J1979-2) during the transition phase.
Technical Paper

Galvanic Corrosion Prevention of Steel-Aluminum Couples

1993-10-01
932357
Efforts towards weight reduction are leading towards increasing use of aluminum components on automobiles. Although aluminum on its own has inherently superior corrosion resistance to steel, galvanic action between the aluminum and steel or galvanized parts can lead to severe corrosion. Straightforward and effective methods of preventing galvanic corrosion from the subject of this paper. Since many aluminum components are connected to steel structures by mechanical fasteners, protective coatings on fasteners were evaluated as well. Galvanic test couples were prepared in a manner simulating typical automotive assembly conditions while incorporating features which would lead to enhanced corrosion. A variety of chemical treatments and coatings on the fasteners as well as barriers between the dissimilar metals were evaluated for corrosion prevention between the aluminum and cold rolled or galvanized steel. Comparison between neutral salt spray and cyclic corrosion tests is provided.
Technical Paper

Designing Adjustable-Speed V-Belt Drives for Farm Implements

1955-01-01
550256
FORMULAS relating the various factors of an adjustable-speed V-belt drive-speed variation, power transmission, and service life-are presented here for the first time. Use of these formulas eliminates previous trial-and-error methods of variable-speed-drive designing. Following the procedures and data given in this paper, the designer can now calculate a drive knowing that a V-belt of satisfactory quality will give satisfactory service within the limits of certain design assumptions.
Technical Paper

Human Reactions to Vibration

1936-01-01
360139
PRESENTING the analysis of several thousand observations of the reactions of humans to vibration when sitting on a controlled vibrating seat or platform and in moving vehicles. Physical reactions are defined carefully as a result of many experiments under controlled conditions. The perfection of a three-directional wave-recording accelerometer is described. Its use in determining vibration conditions when the defined physical reactions occur is displayed. The relative effects of vibration in three directions on hard and upholstered seats are disclosed together with suggested instrumentation with the accelerometer. The rating of vehicles of transportation by a comfort scale is easily accomplished by the use of the accelerometer.
Technical Paper

Cetane Rating of Diesel Fuels

1936-01-01
360118
IN the testing method described in this paper the moment of ignition is determined by a mechanism consisting of a diaphragm in the cylinder head, a phonograph “pick-up,” a short stiff wire transmitting the motion of the diaphragm to the pick-up, a thyratron relay, and a neon lamp protractor. When ignition occurs in the cylinder the flexing velocity of the diaphragm is sufficiently high so that the voltage generated in the coil of the pick-up trips the thyratron tube and permits a high-tension condenser discharge to be sent through the neon lamp which by its flashes then indicates the time of ignition. Because of the absence of friction and arcing the action of the pick-up is more regular than that of a bouncing pin. A similar pick-up is used for indicating injection timing. Using this apparatus and the “fixed-ignition-lag method” the Diesel fuel testing in the C.F.R. engine has been so simplified that seven to eight fuels can be tested in an hour with a high degree of reproducibility.
Technical Paper

Beyond Digital Twin, Innovative Use of AI/ML Technology from Ideation to Design of Next Generation Electric Drive Systems

2024-04-09
2024-01-2862
Accelerated adoption of electric propulsion system in mobility industry has stressed the time and iterations of product development cycle which was traditionally known to go over multiple iterations and phases. Current market demands a timely introduction of compelling products that brings high value to end user. Further, a growing emphasis over reducing mineral content using sustainable options and process, adds further complexity to multi-objective-optimization of electric drive systems. At BorgWarner our engineers use Digital-Twins, physics-based models which closely represent BorgWarner products in greater dept (physics) thus allowing an improved assessment of product design (components and systems) to target application at very early stage in product development. The spring success with Digital-Twin, BorgWarner furthered enhanced the model through introducing Artificial Intelligent (AI) and Machine Learning (ML) technologies in both modelling and virtual sensing.
Technical Paper

Development of the Hybrid/Battery ECU for the Toyota Hybrid System

1998-02-23
981122
For energy saving and global warming prevention, Toyota has developed Toyota Hybrid System (THS) for mass-produced passenger cars, which achieves drastic improvement in fuel efficiency and reduction in exhaust emissions compared to conventional gasoline engine cars. The THS has two motive power sources which engage depending on driving conditions. It's power is supplied either from an engine (controlled by the engine ECU) or an electric motor (controlled by the motor ECU) which is powered by a high-voltage battery (monitored by the battery ECU). These ECUs are controlled by a hybrid ECU. Each ECU has been developed with a fail-safe system in mind, to ensure driver safety in case of vehicle breakdowns. Among these ECUs, this paper reports particularly on the newly introduced ECUs: hybrid ECU and battery ECU. In the development of these ECUs, special attention was focused on fail-safe performance.
Technical Paper

Transmission of sound under the influence of various environmental conditions

2024-06-12
2024-01-2933
Electrified vehicles are particularly quiet, especially at low speeds due to the absence of combustion noises. This is why there are laws worldwide for artificial driving sounds to warn pedestrians. These sounds are generated using a so-called Acoustic Vehicle Alerting System (AVAS) which must maintain certain minimum sound pressure levels in specific frequency ranges at low speeds. The creation of the sound currently involves an iterative and sometimes time-consuming process that combines composing the sound on a computer with measuring the levels with a car on an outside noise test track. This continues until both the legal requirements and the subjective demands of vehicle manufacturers are met. To optimize this process and reduce the measurement effort on the outside noise test track, the goal is to replace the measurement with a simulation for a significant portion of the development.
Technical Paper

Traceability E-Fuels 2035

2024-07-02
2024-01-3022
EU legislation provides for only local CO2 emission-free vehicles to be allowed in individual passenger transport by 2035. In addition, the directive provides for fuels from renewable sources, i.e. defossilised fuels. This development leads to three possible energy sources or forms of energy for use in individual transport. The first possibility is charging with electricity generated from renewable sources, the second possibility is hydrogen generated from renewable sources or blue production path. The third possibility is the use of renewable fuels, also called e-fuels. These fuels are produced from atmospheric CO2 and renewable hydrogen. Possible processes for this are, for example, methanol or Fischer-Tropsch synthesis. The production of these fuels is very energy-intensive and large amounts of renewable electricity are needed.
Technical Paper

The use of machine learning algorithms in the simulation of multi-layer acoustic palliatives.

2024-06-12
2024-01-2928
Acoustic palliatives used in the automotive industry have evolved from simple felt and heavy layer combinations into highly complex formulations and combinations to account for higher performance targets, lower weight and inevitably cost constraints. Achieving Customer performance compliance usually involves a time-consuming exercise of material characterisation and measurement. Ideally this should be carried out via simulation, but as material mixtures and compositions become more complex, the ability to accurately simulate their acoustic performance is becoming increasingly difficult. Historically, Biot parameters and their associated TMM models have been used to simulate the acoustic performance of multi-layer material compositions. However, these simulations are not able to account for real-world complexities such as manufacturing imperfections or inter-layer gluing effects.
Technical Paper

New Equivalent Static Load (ESL) Creation Procedure for Complete Vehicle

2024-06-12
2024-01-2944
By analyzing the dynamic distortion in all body closure openings in a complete vehicle, a better understanding of the body characteristics can be achieved compared to traditional static load cases such as static torsional body stiffness. This is particularly relevant for non-traditional vehicle layouts and electric vehicle architectures. The body response is measured with the so-called Multi Stethoscope (MSS) when driving a vehicle on a rough pavé road (cobble stone). The MSS is measuring the distortion in each opening in two diagonals. During the virtual development, the distortion is described by the relative displacement in diagonal direction in time domain using a modal transient analysis. The results are shown as Opening Distortion Fingerprint ODF and used as assessment criteria within Solidity and Perceived Quality. By applying the Principal Component Analysis (PCA) on the time history of the distortion, a Dominant Distortion Pattern (DDP) can be identified.
Technical Paper

Trim-structure interface modelling and simulation approaches for FEM applications

2024-06-12
2024-01-2954
Trim materials are often used for vibroacoustic energy absorption purposes within vehicles. To estimate the sound impact at a driver’s ear, the substructuring approach can be applied. Thus, transfer functions are calculated starting from the acoustic source to the car body, from the car body to the trim and, finally, from the trim to the inner cavity where the driver is located. One of the most challenging parts is the calculation of the transfer functions from the car body inner surface to the bottom trim surface. Commonly, freely laying mass-spring systems (trims) are simulated with a fixed boundary and interface phenomena such as friction, stick-slip or discontinuities are not taken into consideration. Such an approach allows for faster simulations but results in simulations strongly overestimating the energy transfer, particularly in the frequency range where the mass-spring system’s resonances take place.
X