Refine Your Search

Search Results

Technical Paper

Energy Consumption Optimization for the Electric Vehicle Air Conditioning Using the Condensate Water

2019-04-02
2019-01-0148
In summer, the relatively low temperature water condenses in the evaporator when the vehicle air-conditioning (AC) is running. At present, the vehicle AC condensate water without well utilization is directly wasted. The condenser’s thermal transfer performance has a great influence on the AC performance, and to increase the convective heat transfer coefficient (CHTC) is the key to its design. In this paper, a method of using atomized condensate water (CW) to enhance the condenser’s thermal transfer performance is proposed, which can make the most of the CW's cold energy. It achieves the reuse of CW and increases the condenser’s CHTC. First, the CW flow calculation model in the evaporator and the calculation model of the condenser enhanced thermal transfer using atomized CW are both set up. The influence of the evaporation degree of atomized CW particles in the air on the enhancement effect is comprehensively considered.
Technical Paper

Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability

2019-04-02
2019-01-0195
This article discusses highly flexible and accurate physics-based mean value modeling (MVM) for internal combustion engines and its wide applicability towards virtual vehicle calibration. The requirement to fulfill the challenging Real Driving Emissions (RDE) standards has significantly increased the demand for precise engine models, especially models regarding pollutant emissions and fuel economy. This has led to a large increase in effort required for precise engine modeling and robust model calibration. Two best-practice engine modeling approaches will be introduced here to satisfy these requirements. These are the exclusive MVM approach, and a combination of MVM and a Design of Experiments (DOE) model for heterogeneous multi-domain engine systems.
Technical Paper

A Novel Three Steps Composited Parameter Matching Method of an Electromagnetic Regenerative Suspension System

2019-04-02
2019-01-0173
The electromagnetic regenerative suspension has attracted much attention recently due to its potential to improve ride comfort and handling stability, at the same time recover kinetic energy which is typically dissipated in traditional shock absorbers. The key components of a ball-screw regenerative suspension system are a motor, a ball screw and a nut. For this kind of regenerative suspension, its damping character is determined by the motor's torque-speed capacity, which is different from the damping character of the traditional shock absorber. Therefore, it is necessary to establish a systematic approach for the parameter matching of ball-screw regenerative suspension, so that the damping character provided by it can ensure ride comfort and handling stability. In this paper, a 2-DOF quarter vehicle simulation model with regenerative suspension is constructed. The effects of the inertia force on ride comfort and handling stability are analyzed.
Technical Paper

Vibration Control of an Active Seat Suspension System Integrated Pregnant Woman Body Model

2019-04-02
2019-01-0172
Proportional-integral-derivative (PID) controller is effective, popular and cost effective for a lot of scientific and engineering applications. In this paper, PID and fuzzy-self-tuning PID (FSTPID) controllers are applied to improve the performance of an active seat suspension system to enhance the pregnant woman comfort. The equations of motion of thirteen-degrees-of-freedom (13-DOF) active seat suspension system incorporating pregnant woman body model are derived and simulated. PID gains are tuned and estimated using genetic algorithm (GA) to formulate GA PID controller. In FSTPID, fuzzy logic technique is used to tune PID controller gains by selecting appropriate fuzzy rules using Matlab/Simulink software. Both controlled active seat suspension systems are compared with a passive seat suspension. Suspension performance is evaluated under bump and random road excitations in order to verify the success of the proposed controllers.
Technical Paper

Energy Management Optimization for Plug-In Hybrid Electric Vehicles Based on Real-World Driving Data

2019-04-02
2019-01-0161
Excellent energy consumption performance of a plug-in hybrid electric vehicle (PHEV) is usually attributed to its hybrid drive mode. However, the factors including vehicle performance, driver behavior and traffic status have been shown to cause unsatisfactory performance. This phenomenon leads to a necessity of study on energy consumption control strategies under real-world driving conditions. This paper proposes a new approach for energy management optimization of plug-in hybrid electric vehicles based on real-world driving data for two purposes. One is for improving the energy consumption of PHEV under real-world driving conditions and the other is for reducing the computational complexity of optimization methods in simulation models. In this process, the paper collected real-world driving record data from 180 drivers within 6 months. Then the principal component analysis (PCA) was employed to extract and define the hidden factors from the initial real-world driving data.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion

2019-04-02
2019-01-0207
Numerical investigation of engine performance and emissions of a six-stroke gasoline compression ignition (GCI) engine combustion at low load conditions is presented. In order to identify the effects of additional two strokes of the six-stroke engine cycle on the thermal and chemical conditions of charge mixtures, an in-house multi-dimensional CFD code coupled with high fidelity physical sub-models along with the Chemkin library was employed. The combustion and emissions were calculated using a reduced chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Two power strokes per cycle were achieved using multiple injections during compression strokes. Parametric variations of injection strategy viz., individual injection timing for both the power strokes and the split ratio that enable the control of combustion phasing of both the power strokes were explored.
Technical Paper

Numerical Study of Turbulence and Fuel-Air Mixing within a Scavenged Pre-Chamber Using RANS and LES

2019-04-02
2019-01-0198
It is well-known that the spatial distribution of turbulence intensity and fuel concentration at spark-time play a pivotal role on the flame development within the pre-chamber in gas engines equipped with a scavenged pre-chamber. The combustion within the pre-chamber is in turn a determining factor in terms of combustion behaviour in the main chamber, and accordingly it influences the engine efficiency as well as pollutant emissions such as NOx and unburned hydrocarbons. This paper presents a numerical analysis of fuel concentration and turbulence distribution at spark time for an automotive-sized scavenged pre-chamber mounted at the head of a rapid compression-expansion machine (RCEM). Two different pre-chamber orifice orientations are considered: straight and tilted nozzles. The latter introduce a swirling flow within the pre-chamber. Simulations have been carried out using with two different turbulence models: Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES).
Technical Paper

Investigation of Fuel Condensation Processes under Non-reacting Conditions in an Optically-Accessible Engine

2019-04-02
2019-01-0197
Engine experiments have revealed the importance of fuel condensation on the emission characteristics of low temperature combustion. However, direct in-cylinder experimental evidence has not been reported in the literature. In this paper, the in-cylinder condensation processes observed in optically accessible engine experiments are first illustrated. The observed condensation processes are then simulated using state-of-the-art multidimensional engine CFD simulations with a phase transition model that incorporates a well-validated phase equilibrium numerical solver, in which a thermodynamically consistent phase equilibrium analysis is applied to determine when mixtures become unstable and a new phase is formed. The model utilizes fundamental thermodynamics principles to judge the occurrence of phase separation or combination by minimizing the system Gibbs free energy.
Technical Paper

Validation of a Species-Based Extended Coherent Flamelet Model (SB-ECFM) in a Spark Ignition Engine

2019-04-02
2019-01-0222
The Extended Coherent Flamelet Model (ECFM) is limited to lower order upwinding schemes to minimize the numerical discrepancy between species and tracers, which can lead to inaccurate estimates of the progress variable and consequently negative conditional mass fractions in the burned gases after ignition. The recently developed Species-Based ECFM (SB-ECFM) removes the species tracers from the definition of the progress variable, and allows the use of higher order schemes. In this study, SB-ECFM is coupled with the Imposed Stretch Spark Ignition Model (ISSIM) to simulate a spark-ignition engine, the transparent combustion chamber (TCC) engine. To examine the spatial discretization effect and demonstrate the improvement due to using higher order schemes, Reynolds-Averaged-Navier-Stokes (RANS) simulations performed with a first-order upwinding scheme and a second-order central differencing scheme are compared.
Technical Paper

Evaluating Surface Film Models for Multi-Dimensional Modeling of Spray-Wall Interaction

2019-04-02
2019-01-0209
Surface film formation is an important phenomenon during spray impingement in a combustion chamber. The film that forms on the chamber walls and piston bowl produces soot post-combustion. While some droplets stick to the wall surface, others splash and interact with the gas present inside the combustion chamber. Accurate prediction of both the film thickness and splashed mass is crucial for surface film model development since it leads to a precise estimation of the amount of soot and other exhaust gases formed. This information could guide future studies aimed at a comprehensive understanding of the combustion process and might enable development of engines with reduced emissions. Dynamic structure Large Eddy Simulation (LES) turbulence model implemented for in-cylinder sprays [1] has shown to predict the flow structure of a spray more accurately than the Reynolds-averaged Navier-Stokes turbulence model.
Technical Paper

Methodology to Perform Conjugate Heat Transfer Modeling for a Piston on a Sector Geometry for Direct-Injection Internal Combustion Engine Applications

2019-04-02
2019-01-0210
The increase in computational power in recent times has led to multidimensional computational fluid dynamics (CFD) modeling tools being used extensively for optimizing the diesel engine piston design. However, it is still common practice in engine CFD modeling to use constant uniform boundary temperatures. This is either due to the difficulty in experimentally measuring the component temperatures or the lack of measurements when simulation is being used predictively. This assumption introduces uncertainty in heat flux predictions. Conjugate heat transfer (CHT) modeling is an approach used to predict the component temperatures by simultaneously modeling the heat transfer in the fluid and the solid phase. However, CHT simulations are computationally expensive as they require more than one engine cycle to be simulated to converge to a steady cycle-averaged component temperature.
Technical Paper

Influence of Intake Valve Lift on Flow Capacity of Intake Port

2019-04-02
2019-01-0223
A three-dimensional model of a diesel engine intake port was established and was verified by steady-flow test. Based on this model, the influence of intake valve lift on the flow capacity of intake port was studied and a design method of maximum valve lift was put forward. The results show that, under different intake pressure and relative pressure difference conditions, the discharge coefficient increases first and then converges with the increase of valve lift. Under the same valve lift condition, with the increase of relative pressure difference, the discharge coefficient decreases slightly in subsonic state and decreases sharply from subsonic state to supersonic state, but the mass flow rate increases slightly. The optimum ratio of valve lift and valve seat diameter is related to relative pressure difference, it increases first and then keeps constant with the increase of relative pressure difference.
Technical Paper

Framework Standard for Prognosis: An Approach for Effective Prognosis Implementation

2019-01-09
2019-26-0364
Prognosis is used to improve system availability. This is achieved by minimizing system downtime with the help of mechanisms that senses the degradation in the system health to predict the ‘time-to-failure’ of the system. Degradation in the system’s health is measured by sensing the early signs of aging and wear and tear of the system components. This requires knowledge of all the failure modes of the system along with patterns of behavioral changes in the individual components of the system while it continues to age. Prognosis methods and mechanisms are still evolving. So, no comprehensive guidelines or framework standards exist as of today that can provide reliable and standardized prognosis solutions to the end user customers. The intent of devising such a framework and guidelines is to improve and standardize the implementation of prognosis solutions so that; it will be more effective to all stakeholders from the perspective of safety, cost and convenience.
Technical Paper

Design for Adaptive Rear Floor Carpet for Changing Shapes and Complex Architecture

2019-10-11
2019-28-0004
With increasing road traffic and pollution, it becomes responsibility for all OEM to increase fuel efficiency and reduce carbon footprint. Most effective way to do so is to reduce weight of the vehicle and more use of ecofriendly recyclable material. With this objective we have come up with Light weight, cost effective sustainable design solution for Injection moulded RQT (Rear quarter trim). It is an interior plastic component mounted in the III row of the vehicle. This is required to ensure inside enhanced aesthetic look of the vehicle and comfort for 3rd row passengers. Conventionally RQT of vehicle with 3rd row seating is made using plastic material (PP TD 20). With the use of plastic moulded RQT there is a significant weight addition of around 6 kg per vehicle along with reduced cabin space, huge investment and development time impact.
Technical Paper

Aero-Acoustics Noise Prediction of 3D Treaded Tyre Using CFD

2019-01-09
2019-26-0362
Tyre exterior noise legislation (pass-by) is becoming more stringent with time. To cater to these requirements, it is very important to understand the tyre noise generation and enhancing mechanisms such as air pumping, air turbulence, pipe resonance, horn effect in high frequency region from 500Hz to 4000Hz. These phenomena are affected by air flow around and within the tyre pattern hence, CFD based approach is chosen for tyre exterior noise. The CFD based methodology helps in fine tuning the tread pattern to reduce aero acoustic noise level which leads to reduction in the product design cycle time. In present study, 3d transient CFD aero-acoustic modelling approach results were validated against the anechoic tyre rolling noise test data which captures the air-born noise mechanisms for frequency range of 1 kHz to 4 kHz.
Technical Paper

Securing Inter-Processor Communication in Automotive ECUs

2019-01-09
2019-26-0363
Modern cars now come with sophisticated telemetry which often involve connecting to the internet over mobile telephone networks or Wi-Fi. The telemetry or cloud functions of the car is typically handled by a Telematics Control Unit or the Infotainment System. The microcontrollers (Host Processor) powering the ECUs are very powerful and often have operating systems such as Linux or QNX to drive the large displays or perform modem functionalities. These powerful microcontrollers take several seconds to startup and does not offer hard real-time performance - both of which are critical to handle the vehicle CAN network. Hence, it is common to include a less powerful microcontroller to the ECU to perform the management of the vehicle CAN network. These smaller microcontrollers (Vehicle Processor) can startup fast and provide hard real-time performance.
Technical Paper

1D Tire Model Parameter Synthesis for Vehicle Handling Targets Assessment “A Strategy of Optimization and Evaluation of Tire Math’s”

2019-01-09
2019-26-0361
Handling performance of a vehicle is a key characteristic determining the response of vehicle under different operating scenarios. An insight into these vehicle-handling characteristics at early stage can be extremely useful in the design and development process. Tire characterization and tuning is important and mandatory to scrutinize each functional and individual parameter of tire. Tire force and moment data is having a significant effect in vehicle handling. Segregation of tire parameter, which is contributing vehicle-handling performance, helps to identify and perform optimization for improvisation. The main objective of this study is development and integration optimized 1D tire model into multibody dynamics model of the vehicle to observe various vehicle compliances towards its handling performance target.
Technical Paper

Parametric Modelling & High-Fidelity Algorithms for Vehicle Weight Estimation for Optimized Concept Vehicle Architecture

2019-10-11
2019-28-0036
The concept definition phase of typical vehicle development focuses on the architecture definition and optimization based on different constraints/requirements. With the focus on Sustainability, the architecture optimization process must include “Light-weighting” as an optimization criterion. With only concept vehicle architecture available, the vehicle weight estimation becomes judgmental & inaccurate. This paper aims to address this deficiency with a new analytical approach for vehicle weight estimation. The new approach for vehicle weight estimation is a “bottom-up” approach using parametric models for each system weight with the inputs being the relevant vehicle specifications driving the system engineering. For size/shape-driven (rather than functional) systems, the models are content-based & segment-based. The parametric models are then iterated for multiple architecture concepts & specifications and the optimum concept (meeting all functional & business constraints) is chosen.
Technical Paper

Numerical Study of Effect of Material and Orientation on Strength of Side Door Intrusion Beam

2019-10-11
2019-28-0039
Nowadays more and more people are concerned about the safety rating of their vehicle. The safety rating depends on the ability of the car to minimize the injury to the occupants post-crash. Crashworthiness of the vehicle is determined by carrying out various tests such as static and dynamic tests. Side crashes are one of the leading causes of fatal injury following front crashes. Side door strength is dependent on the door components such as latch and striker, hinge, door beam etc. Lateral stiffness is contributed significantly by the side door beam in the door structure. The side door beam limits the side intrusion into passenger compartment. This paper emphasizes the effect of intrusion beam materials and orientation in the side door strength with a numerical approach using ANSYS tool. These factors affect the strength and weight of the door. The simulation study with respect to door design is cost-effective and time-saving.
Technical Paper

Winglet Design and Analysis for Cessna 152 - A Numerical Study

2019-10-11
2019-28-0035
During flight an emergent circulatory flow pattern named vortex is observed at wing tips producing induced drag. An approach to reduce this effect is by implementing winglets. Winglets are small wing-like lifting surfaces, fitted at the tip of some wings, usually with the objective of decreasing trailing vortex drag and thereby increasing the aerodynamic efficiency of the wing. The aim of the project is to design and analyze the effect of winglets for Cessna 152 by varying the cant angle and sweep angle. This model has been selected since it provides a good choice for Pilots first airplane. A baseline wing model was designed in CATIA V5, correspondingly wings with winglet models were designed with a fixed taper ratio of 0.2 and different cant and sweep angles. The lift to drag ratio is evaluated at different angles of attack by varying winglet design parameters.
X