Refine Your Search

Search Results

Technical Paper

Internal and Near-Nozzle Flow in a Multi-Hole Gasoline Injector Under Flashing and Non-Flashing Conditions

2015-04-14
2015-01-0944
A computational and experimental study was performed to characterize the flow within a gasoline injector and the ensuing sprays. The computations included the effects of turbulence, cavitation, flash-boiling, compressibility, and the presence of non-condensible gases. The flow domain corresponded to the Engine Combustion Network's Spray G, an eight-hole counterbore injector operating in a variety of conditions. First, a rate tube method was used to measure the rate of injection, which was then used to define inlet boundary conditions for simulation. Correspondingly, injection under submerged conditions was simulated for direct comparison with experimental measurements of discharge coefficient. Next, the internal flow and external spray into pressurized nitrogen were simulated under the base spray G conditions. Finally, injection under flashing conditions was simulated, where the ambient pressure was below the vapor pressure of the fuel.
Technical Paper

Measurement of Liquid and Vapor Penetration of Diesel Sprays with a Variation in Spreading Angle

2015-04-14
2015-01-0946
The mixing field of sprays injected into high temperature and pressure environments has been observed to be tightly connected to spreading angle, therefore linking vaporization and combustion processes to the angular dispersion of the spray. Visualization of the Engine Combustion Network three-hole, Spray B diesel injector shows substantial variation in near-field spreading angle with respect to time compared to past measurements of the single-hole, Spray A injector. The source of these variations originating inside the nozzle, and the implications on mixing, evaporation, and combustion of the diesel plume, need to be understood. In this study, we characterize the ECN-target plume for a Spray B injector (Serial # 211201), which already benefits from extensive and detailed internal measurements of nozzle geometry and needle movement, while comparing to the single-hole Spray A with the same type of detailed geometry and understanding.
Technical Paper

High-Speed Spray-to-Spray Collision Study on Two-Hole Impinging Jet Nozzles

2015-04-14
2015-01-0948
High-speed spray-to-spray liquid impingement could be an effective phenomenon for the spray propagation and droplet vaporization. To achieve higher vaporization efficiency, impingement from two-hole nozzles is analyzed in this paper. This paper focuses on investigating vaporization mechanism as a function of the impingement location and the collision breakup process provided by two-hole impinging jet nozzles. CFD (Computational Fluid Dynamics) is adopted to do simulation. Lagrangian model is used to predict jet-to-jet impingement and droplet breakup conditions while KH-RT breakup and O'Rourke collision models are implemented for the simulation. The paper includes three parts: First, a single spray injected into an initially quiescent constant volume chamber using the Lagrangian approach is simulated to identify the breakup region, which will be considered as a reference to study two-hole impinging jet nozzles. Lagrangian simulation results would be validated via experimental results.
Technical Paper

Characterization of Alcohol Sprays from Multi-Hole Injector for DISI Engines through PIV Technique

2015-04-14
2015-01-0927
The use of alcohols as alternative to gasoline for fuelling spark-ignition (SI) engines is widespread. Growing interest is paid for n-butanol because of its characteristics that are similar to gasoline. If compared with other alcohols, n-butanol has higher energy content and miscibility with gasoline, lower hygroscope and corrosive properties making it an attractive solution for gasoline replacement. Even if several studies have been conduced to characterize the n-butanol combustion within Spark Ignition engines, few data are available on atomization and spray behavior. This paper reports the results of an experimental investigation to characterize the velocity vector field of two fuel-sprays injected by a 6-hole nozzle for Direct Injection Spark Ignition (DISI) engine. 2D Mie-scattering and Particle Image Velocimetry (PIV) measurements were carried out in an optically accessible vessel at ambient temperature and pressure.
Technical Paper

Understanding the Effects of Fuel Type and Injection Conditions on Spray Evaporation Using Optical Diagnostics

2015-04-14
2015-01-0926
Comparing with port-fuel-injection (PFI) engine, the fuel sprays in spark-ignition direct-injection (SIDI) engines play more important roles since they significantly influence the combustion stability, engine efficiency as well as emission formations. In order to design higher efficiency and cleaner engines, further research is needed to understand and optimize the fuel spray atomization and vaporization. This paper investigates the atomization and evaporation of n-pentane, gasoline and surrogate fuels sprays under realistic SIDI engine conditions. An optical diagnostic technique combining high-speed Mie scattering and Schlieren imaging has been applied to study the characteristics of liquid and vapor phases inside a constant volume chamber under various operating conditions. The effects of ambient temperature, fuel temperature, and fuel type on spray atomization and vaporization are analyzed by quantitative comparisons of spray characteristics.
Technical Paper

An Experimental Study of Injection and Combustion with Dimethyl Ether

2015-04-14
2015-01-0932
DiMethyl Ether (DME) has been known to be an outstanding fuel for combustion in diesel cycle engines for nearly twenty years. DME has a vapour pressure of approximately 0.5MPa at ambient temperature (293K), thus it requires pressurized fuel systems to keep it in liquid state which are similar to those for Liquefied Petroleum Gas (mixtures of propane and butane). The high vapour pressure of DME permits the possibility to optimize the fuel injection characteristic of direct injection diesel engines in order to achieve a fast evaporation and mixing with the charged gas in the combustion chamber, even at moderate fuel injection pressures. To understand the interrelation between the fuel flow inside the nozzle spray holes tests were carried out using 2D optically accessed nozzles coupled with modelling approaches for the fuel flow, cavitation, evaporation and the gas dynamics of 2-phase (liquid and gas) flows.
Technical Paper

Measurements of Time-Resolved Mass Injection Rates for a Multi-Hole and an Outward Opening Piezo GDI Injector

2015-04-14
2015-01-0929
Time-resolved mass injection rates of an outward opening piezo-actuated and a solenoid actuated multi-hole GDI injector were measured to investigate (1) the influence of both hardware and software settings and (2) the influence on the injection rates from a wide range of operational parameters and (3) discuss limitations and issues with this measurement technique. The varied operating parameters were fuel pressure, back-pressure, electrical pulse width, single/double injection and injection frequency. The varied hardware/software parameters were injector protrusion, upstream fuel pressure condition and the cut-off frequency of the software's low-pass filter. Signal quality was found to be dependent on both hardware and software settings, especially the cut-off frequency of the low-pass filter. Measurements with high signal quality were not possible for back-pressures lower than 0.5 MPa.
Technical Paper

Pollutant Emission Reduction and Increased Efficiency for Compression Ignition Engines Utilizing Biodiesel through Optimization of the Fuel Injection Process

2015-04-14
2015-01-0914
Understanding the physics and chemistry involved in diesel combustion, with its transient effects and the inhomogeneity of spray combustion is quite challenging. Great insight into the physics of the problem can be obtained when an in-cylinder computational analysis is used in conjunction with either an experimental program or through published experimental data. The main area to be investigated to obtain good combustion begins with the fuel injection process and the mean diameter of the fuel particle, injection pressure, drag coefficient, rate shaping etc. must be defined correctly. The increased NOx production and reduced power output found in engines running biodiesel in comparison to petrodiesel is believed to be related to the different fuel characteristics in comparison to petroleum based diesel. The fuel spray for biodiesel penetrates farther into the cylinder with a smaller cone angle. Also the fuel properties between biodiesel and petrodiesel are markedly different.
Technical Paper

Impingement Behavior of Fuel Droplets on Oil Film

2015-04-14
2015-01-0913
In a direct injection gasoline engine, the impingement of injected fuel on the oil film, i.e. cylinder liner gives rise to various problems such as abnormal combustion, oil dilution and particulate matter emission. Therefore, in order to solve these problems, it is necessary to have a clear understanding of the impingement behavior of the fuel spray onto the oil film. However, there is little information on the impingement behavior of the fuel droplet onto the oil film, whereas many investigations on the impingement behavior of the fuel droplet onto the fuel film are reported. In this study, fundamental investigations were performed for the purpose of clarifying the impingement behavior of the fuel spray onto the oil film. A single fuel droplet mixed with fluorescence dye was dripped on the oil film. To separately measure the fuel and the oil after impingement, simultaneous Mie scattering and laser-induced fluorescence (LIF) methods were performed.
Technical Paper

GDI Spray-Wall Interaction with Numerical Characterization: Wall Temperature Influence

2015-04-14
2015-01-0917
The work analyses, from both an experimental and a numerical point of view, the impingement of a spray generated from a GDI injector on a hot solid wall. The temperature of the surface is identified as an important parameter affecting the outcome after impact. A gasoline spray issuing from a customized single-hole injector is characterized in a quiescent optically-accessible vessel as it impacts on an aluminum plate placed at 22.5 mm from the injector tip. Optical investigations are carried out at atmospheric back-pressure by a direct schlieren optical set-up using a LED as light source. A synchronized C-Mos high-speed camera captures cycle-resolved images of the evolving impact. The spatial and temporal evolution of the liquid and vapor phases are derived. They serve to define a data base to be used for the validation of a properly formulated 3D CFD model suitable to describe the impact of the fuel on the piston head in a real engine.
Technical Paper

Application of Fuel Momentum Measurement Device for Direct Injection Natural Gas Engines

2015-04-14
2015-01-0915
In direct-injection engines, combustion and emission formation is strongly affected by injection quality. Injection quality is related to mass-flow rate shape, momentum rate shape, stability of pulses as well as mechanical and hydraulic delays associated with fuel injection. Finding these injector characteristics aids the interpretation of engine experiments and design of new injection strategies. The goal of this study is to investigate the rate of momentum for the single and post injections for high-pressure direct-injection natural gas injectors. The momentum measurement method has been used before to study momentum rate of injection for single and split injections for diesel sprays. In this paper, a method of momentum measurement for gas injections is developed in order to present transient momentum rate shape during injection timing. In this method, a gas jet impinges perpendicularly on a pressure transducer surface.
Technical Paper

Five Novel Bio Based Diesels Tested in a Light-Duty Road Going Engine

2015-04-14
2015-01-0899
As a result of research made during EuroBioRef, five alternative bio based diesel fuels have been produced and tested. The fuels consisted of three different products made from castor oil: Esterol A, Esterol Lot BP093 and Methyl-UCT. The two remaining fuels were POM-Methyl 2.8 and 3-Methylheptane. For the test, the fuels were blended with a reference diesel at a 30%vol ratio. The fuels were tested in a euro 4, 1.6L light-duty high-speed road going turbocharged engine with an EGR-system. The engine was configured with standard injectors and standard ECU settings. The tests were performed on an eddy current dynamometer in four different modes. Analysis shows that the NOx level increased slightly for Esterol A, Methyl-UCT and POM-methyl 2.8. It also showed that CO level was higher for POM-Methyl 2.8 and 3-Methylheptane during highest speed and load.
Technical Paper

Investigation of the Effect of Compression Ratio on the Combustion Behavior and Emission Performance of HVO Blended Diesel Fuels in a Single-Cylinder Light-Duty Diesel Engine

2015-04-14
2015-01-0898
Hydrotreated vegetable oil (HVO) is a renewable high quality paraffinic diesel that can be obtained by the hydrotreating of a wide range of biomass feedstocks, including vegetable oils, animal fats, waste oils, greases and algal oils. HVO can be used as a drop-in fuel with beneficial effects for the engine and the environment. The main objective of this study was to explore the potential of HVO as a candidate bio blendstock for new experimental formulations of diesel fuel to be used in advanced combustion systems at different compression ratios and at high EGR rates in order to conform to the Euro 6 NOx emission standard. The experiments were carried out in a single-cylinder research engine at three steady-state operating conditions and at three compression ratios (CR) by changing the piston.
Technical Paper

Start-up and Steady-State Performance of a New Renewable Alcohol-To-Jet (ATJ) Fuel in Multiple Diesel Engines

2015-04-14
2015-01-0901
A new Alcohol To Jet (ATJ) fuel has been developed using a process which takes biomass feedstock to produce a branched butanol molecule. Further dehydration, reforming and hydro-treating produced principally a highly branched C12 iso-paraffin molecule. This ATJ fuel with a low cetane value (DCN = 18) was blended with Navy jet fuel (JP5) in various quantities and tested in order to determine how much ATJ could be blended before diesel engine operation became problematic (the US Navy and Marine Corps may use jet fuel in their diesel engines). Blends of 20%, 30% and 40% ATJ (by volume) were tested with jet fuel. The Derived Cetane Number (DCN) falls from 45 for the base JP5 to 38 with the 40% ATJ component blended in. Engine start performance was evaluated on two Yanmar engines and a Waukesha CFR diesel engine and showed that engine start times increased steadily with increasing ATJ content.
Technical Paper

Experimental Investigation of n-Butanol Diesel Fuel Blends on a Passenger Car

2015-04-14
2015-01-0903
N-butanol is a promising alternative fuel which needs no engine modification when used as a blend with diesel. The miscibility of n-butanol with diesel is excellent in a wide range of blending ratios. N-butanol has high oxygen content and a comparable energy content, specific gravity and viscosity to that of diesel, which makes it attractive for diesel engines as an alternative fuel. An experimental investigation was conducted to assess the performance of a new generation passenger car with respect to power, fuel economy (FE) and mass emission using 5, 10 and 20 percent (by vol.) n-butanol blends with diesel (NB). Computer controlled DC motor driven chassis dynamometer, AVL AMA I60 mass emission measuring system and AVL FSN smoke meter were used for measuring wide open throttle (WOT) power, road load simulation (RLS) fuel economy, mass emissions and smoke in WOT and steady speed driving conditions.
Technical Paper

In-Cylinder Oxygen Mass Fraction Estimation Method for Minimizing Cylinder-to-Cylinder Variations

2015-04-14
2015-01-0874
Recent developments in advanced combustion engines have demonstrated the potential increases in efficiency and reductions in emissions through low temperature combustion (LTC). These combustion modes often rely on high exhaust gas recirculation (EGR), early fuel injection systems, and in some cases a combination of fuels with different reactivities. Despite the advantages of LTC, such operations are highly sensitive to the in-cylinder pre-combustion conditions and face significant challenges in multi-cylinder operation due to cylinder-to-cylinder variations of the combustion process. The cause of cylinder-to-cylinder variations is strongly tied to non-uniform trapped mass. In particular, in-cylinder oxygen concentration plays a critical role in the combustion process of each cylinder and can be leveraged to predict combustion characteristics and to develop control algorithms that mitigate cylinder-to-cylinder variation.
Technical Paper

Investigations on In-Cylinder Pressure Cycle-to-Cycle Variations in a Diesel Engine by Recurrence Analysis

2015-04-14
2015-01-0875
In this paper we have obtained real-time series of in-cylinder pressure by carrying out some experiments and studied the in-cylinder pressure cycle-to-cycle variations in a diesel engine. By using recurrence plot (RP) and recurrence quantification analysis (RQA), we have investigated the dynamical characteristics of combustion in diesel engine through the in-cylinder pressure cycle-to-cycle variations. The results show that the combustion process exhibits many chaotic features and deterministic nature, the qualitative and quantitative change in combustion can be easily related to patterns in recurrence plots (RPs) and RQA, and combustion system is sensitive to initial conditions. The conclusions of our research work may be helpful in developing effective control strategies to improve diesel engine performance.
Technical Paper

Transient Control Technology of Spark Assisted HCCI

2015-04-14
2015-01-0880
Amidst the rising demand to reduce CO2 and other greenhouse gas emissions in recent years, gasoline homogeneous-charge compression ignition (HCCI) has gained attention as a technology that achieves both low NOx emissions and high thermal efficiency by means of lean combustion. However, gasoline HCCI has low robustness toward intracylinder temperature variations, therefore the problems of knocking and misfiring tend to occur during transient operation. The authors verified the transient operation control of HCCI by using a 4-stroke natural aspiration (NA) gasoline engine provided with direct injection (DI) and a variable valve timing and a lift electronic control system (VTEC) for intake air and exhaust optimized for HCCI combustion. This report describes stoichiometry spark ignition (SI) to which external exhaust gas recirculation (EGR) was introduced, HCCI ignition switch control, and changes in the load and number of engine revolutions in the HCCI region.
Technical Paper

Fuel Saving Potential of Different Turbo-Compounding Systems Under Steady and Driving Cycles

2015-04-14
2015-01-0878
The performance of three different electric turbo-compounding systems under both steady and driving cycle condition is investigated in this paper. Three configurations studied in this paper are serial turbo-compounding, parallel turbo-compounding and electric assisted turbo-compounding. The electric power, global gain of the whole system (engine and power turbine) under steady operating condition is firstly studied. Then investigation under three different driving cycles is conducted. Items including fuel consumption, engine operating point distribution and transient response performance are analyzed among which the second item is done based on statistic method combined with the results obtained under steady operating conditions. Study under steady condition indicates that electric assisted turbo-compounding system is the best choice compared with the other two systems. The performance of serial turbo-compounding is load oriented while parallel configuration is speed oriented.
Technical Paper

Human Occupant Kinematics in Low Speed Side Impacts

2002-03-04
2002-01-0020
A search of the automotive collision trauma literature reveals that over the last 35 years shows that there have been less than ten published Society of Automotive Engineers (SAE) articles describing the collision effects and resulting human occupant kinematics in low speed side impact collisions. The aim of this study was to quantify the occupant response for both male and female occupants for a battery of low-speed side impacts with various impact speeds and configurations. Eight volunteers were used in a series of twenty-five staged side impact collisions with impact speeds ranging from approximately 2 km/h to 10 km/h and impact configurations to the front, middle and rear side portions of the vehicle. A NHTSA FMVSS 301 moving barrier was used as the impacting vehicle. A stiff bumper was constructed to fit the front of the barrier and was attached at a normal passenger vehicle bumper height. Occupant and vehicle responses were monitored by accelerometers and high-speed video.
X