Refine Your Search

Search Results

Technical Paper

Advancements in Composite Structural Closures

2014-04-01
2014-01-1059
Composites are well-known to provide good weight reduction and more creative design freedom in automotive closure applications versus traditional ferrous or non-ferrous stamped metal assemblies. Challenges to widespread adoption of composite structures include: Recyclability of the end unit without disassembly Joining together panels Keeping up with high production volumes Limited structural strength without significant metal reinforcement Total delivered cost Latest generation composite liftgates can achieve high levels of component integration and maximum styling freedom by utilizing fully thermoplastic recyclable injected molded panels. Proper material characterization and CAE optimization can reduce the level of internal metal reinforcements, thereby realizing further weight reduction opportunity.
Journal Article

Effects of Situational Urgency on the Perception and Response Time to Lateral Collision Hazards

2021-04-06
2021-01-0857
Situational urgency influences the perception and response time (PRT) interval of drivers confronting emergency collision hazards. However, a gap exists in our understanding of the movement characteristics of a collision hazard that directly contribute to a driver’s decision to initiate an evasive response. The aim of this experiment is to examine how the movement characteristics of intruding vehicles affect an oncoming driver’s PRT interval. Fourteen subjects viewed first-person perspective recordings of a simulated vehicle travelling along a two-lane roadway. Collision hazards were introduced when stopped vehicles positioned at intersecting roadways unexpectedly intruded into the subject’s path. Subjects were instructed to ‘brake’ their vehicle by pressing a keyboard space bar when they perceived that evasive actions were required to avoid a collision.
Technical Paper

Exhaust Gas Sensor with High Water Splash Resistant Layer for Lower Emission

2020-04-14
2020-01-0565
Increasingly stringent regulations call for the reduction of emissions at engine startup to purify exhaust gas and reduce the amount of CO2 emitted. Air-fuel ratio (A/F) sensors detect the composition of exhaust gas and provide feedback to control the fuel injection quantity in order to ensure the optimal functioning of the catalytic converter. Reducing the time needed to obtain feedback control and enabling the restriction-free installation of A/F sensors can help meet regulations. Conventional sensors do not activate feedback control immediately after engine startup as the combination of high temperatures and splashes of condensed water in the exhaust pipe can cause thermal shock to the sensor element. Moreover, sensors need to be installed near the engine to increase the catalyst reaction efficiency. This increases the possibility of water splash from the condensed water in the catalyst.
Technical Paper

Study on Heat Losses during Flame Impingement in a Diesel Engine Using Phosphor Thermometry Surface Temperature Measurements

2019-04-02
2019-01-0556
In-cylinder heat losses in diesel engines decrease engine efficiency significantly and account for approximately 14-19% [1, 2, 3] of the injected fuel energy. A great part of the heat losses during diesel combustion presumably arises from the flame impingement onto the piston. Therefore, the present study investigates the heat losses during flame impingement onto the piston bowl wall experimentally. The measurements were performed on a full metal heavy-duty diesel engine with a small optical access through a removed exhaust valve. The surface temperature at the impingement point of the flame was determined by evaluating a phosphor’s temperature dependent emission decay. Simultaneous cylinder pressure measurements and high-speed videos are associated to the surface temperature measurements in each cycle. Thus, surface temperature readings could be linked to specific impingement and combustion events.
Technical Paper

Driver Perception of Lateral Collision Threats

2020-04-14
2020-01-1198
Immediate collision hazards pose obvious threats to approaching drivers and therefore provoke emergency evasive responses. When the hazard is a vehicle intruding into the lane ahead, how its movement characteristics influence an approaching driver’s response is not well understood. This study examined the relationship between intruding vehicle motion and hazard perception. Seventeen subjects viewed first-person perspective recordings of a simulated vehicle travelling down a two-lane roadway containing several intersections with stop-controlled minor roads. Stopped vehicles were located at approximately half of the minor road intersections. Throughout the study, some vehicles (termed ‘intruders’) accelerated into the subject’s lane of travel at 1 of 6 pre-determined acceleration rates. Subjects were instructed to ‘brake’ their vehicle by pressing the space bar on a keyboard as soon as they perceived that a collision was imminent.
Technical Paper

Investigations on Headlamp and Car Body Tolerances in Real Life

2020-04-14
2020-01-0635
Good lighting is crucial for safe driving at night. Unfortunately, many parameters are contributing to the final result of the individual tolerances of car body, dynamics and headlamp: the resulting aim. The paper will analyze individual tolerance contributors from car body parameters like load, tire pressure, suspension as well as temperature parameters of chassis and plastic parts. The investigation shows that the headlight aim can fluctuate in a worst case scenario more than ±0.3°.
Technical Paper

Numerical Simulation of Fluctuating Wind Noise of a Vehicle in Reproduced on-Road Wind Condition

2024-04-09
2024-01-2353
In vehicle development, reducing noise is a major concern to ensure passenger comfort. As electric vehicles become more common and engine and vibration noises improve, the aerodynamic noise generated around the vehicle becomes relatively more noticeable. In particular, the fluctuating wind noise, which is affected by turbulence in the atmosphere, gusts of wind, and wake caused by the vehicle in front, can make passengers feel uncomfortable. However, the cause of the fluctuating wind noise has not been fully understood, and a solution has not yet been found. The reason for this is that fluctuating wind noise cannot be quantitatively evaluated using common noise evaluation methods such as FFT and STFT. In addition, previous studies have relied on road tests, which do not provide reproducible conditions due to changing atmospheric conditions. To address this issue, automobile manufacturers are developing devices to generate turbulence in wind tunnels.
Journal Article

Factors that Influence Drivers’ Responses to Slower-Moving or Stopped Lead Vehicles

2021-04-06
2021-01-0890
Rear-end crashes account for more than one in five fatal crashes in the U.S. The rear-end crash scenario most commonly associated with fatal crashes involves a following vehicle traveling 40 to 70 mph closing on a lead vehicle at a rate greater than 30 mph. The current research compiled an analysis of the literature to identify the kinematic factors, environmental factors, traffic-related factors and individual differences that are likely to influence drivers’ responses when closing on a slower-moving or stopped lead vehicle [LV]. In Part 1, several primarily kinematic-based methods for modeling drivers’ responses to a LV were compared for high-speed closing events. Methods utilizing looming (angular growth rate) equations were shown to predict drivers’ responses and time-to-contact methods (Inverse Tau) were conditionally accurate when applied to specific crash scenarios. However, the ratio or nominal response time methods did not predict drivers’ responses in most crash scenarios.
Technical Paper

Incidence and Mechanism of Head, Cervical Spine, Lumbar Spine, and Lower Extremity Injuries for Occupants in Low- to Moderate-Speed Frontal Collisions

2021-04-06
2021-01-0902
Automotive accidents and subsequent personal injury claims incur substantial costs annually. While three-point restraint usage, dual-stage airbags, and knee bolster and side curtain airbags have become more ubiquitous and, in some cases, governmentally mandated for front seat occupants, occupant safety and injury risk assessment continue to be at the forefront of automotive innovation. In this study, we combined analyses of the National Automotive Sampling System Crashworthiness Data System (NASS-CDS; 2007-2015) and the Crash Investigation Sampling System (CISS; 2017) with data acquired from vehicle-to-vehicle crash tests conducted with instrumented anthropomorphic test device (ATD) occupants. Together, these analyses were used to compare and relate field injury rates with potential injury mechanisms in low- to moderate-speed frontal collisions.
Technical Paper

Drivers’ Responses to Lead Vehicles: Thresholds for Triggering an Emergency Response, Age Differences, Crash Risks, and Influence of Secondary Task Engagement

2021-04-06
2021-01-0898
Analyses of driver response time studies and fatal crash statistics were examined to determine: 1. whether all rear-end crash types can be analyzed as one crash type, 2. average braking thresholds for drivers, and 3. the influence cell phone usage has on drivers’ response times when responding to a lead vehicle. The goal of this research is to recommend protocols for investigating LV crashes that is supported by the literature. Two distinct lead vehicle [LV] response time events emerged: LV platoon (two vehicles traveling together in close proximity) and LV looming (a vehicle approaching a stopped or much slower LV). In normal driving, platoon LV events were very common but resulted in very few crashes per exposure. Young drivers were over-represented when they did occur. Onset of the hazardous event was when the LV decelerated, and drivers began braking roughly 3 to 5 seconds before impact.
Technical Paper

Reducing Emissions from Lean-Burn Hydrogen Combustion Engines Using a State-of-the-Art Oxidation Catalyst and a VWTi-Based SCR Catalyst: Potentials and Challenges

2024-04-09
2024-01-2634
Hydrogen (H2) is commonly considered as one of the most promising carbon-free energy carriers allowing for a decarbonization of combustion applications, for instance by retrofitting of conventional diesel internal combustion engines (ICEs). Although modern H2-ICEs emit only comparably low levels of nitrogen oxides (NOx), efficient catalytic converters are mandatory for exhaust gas after-treatment in order to establish near-zero emission applications. In this context, the present study evaluates the performance of a commercial state-of-the-art oxidation catalyst (OC) and of a catalyst for selective catalytic reduction (SCR) that are typically used for emission reduction from diesel exhausts under conditions representative for H2-fueled ICEs, namely oxygen-rich exhausts with high water vapor levels, comparably low temperatures, and potentially considerable levels of unburnt H2.
Technical Paper

Comprehensive Evaluation of Behavioral Competence of an Automated Vehicle Using the Driving Assessment (DA) Methodology

2024-04-09
2024-01-2642
With the development of vehicles equipped with automated driving systems, the need for systematic evaluation of AV performance has grown increasingly imperative. According to ISO 34502, one of the safety test objectives is to learn the minimum performance levels required for diverse scenarios. To address this need, this paper combines two essential methodologies - scenario-based testing procedures and scoring systems - to systematically evaluate the behavioral competence of AVs. In this study, we conduct comprehensive testing across diverse scenarios within a simulator environment following Mcity AV Driver Licensing Test procedure. These scenarios span several common real-world driving situations, including BV Cut-in, BV Lane Departure into VUT Path from Opposite Direction, BV Left Turn Across VUT Path, and BV Right Turn into VUT Path scenarios.
Technical Paper

Reduced Order Modeling Technology with AI for Model-Based-Development

2024-04-09
2024-01-2850
This paper introduces reduced-order modeling techniques with Artificial Intelligence (AI) for Model-Based Development (MBD). In vehicle development, detailed physical models are replaced by reduced-order models (ROM) to expedite simulations. With recent advancements in AI-based reduced-order modeling, it is expected that modeling work will become more efficient, leading to reduced simulation times. However, the range of simulations (Model-in-the-Loop Simulation - MILS, Hardware-in-the-Loop Simulation - HILS, bench-system) compatible with ROM is limited. To overcome this limitation, this study leverages the ONNX format (Open Neural Network Exchange), a universally supported format among machine learning frameworks, and the Functional Mock-up Interface (FMI), a standard interface format for simulation tools, to enable general-purpose embedded technology with ROM. This study employs a vehicle model in engine surge simulations to validate AI-based reduced-order modeling for MBD.
Technical Paper

Analysis of Aerodynamic Characteristics of Fan-Type Wheels

2024-04-09
2024-01-2540
This research addresses the pressing need for reducing vehicle aerodynamic resistance, with a specific focus on mitigating wheel and tire resistance, which constitutes approximately 25% of the overall vehicle drag. While the prevailing method for reducing resistance in mass production development involves wheel opening reduction, it inadvertently increases wheel weight and has adverse effects on brake cooling performance. To overcome these challenges, novel complementary resistance reduction methods that can be employed in conjunction with an appropriate degree of wheel opening reduction are imperative. In this study, we introduce symmetrical wheels with a fan-like shape as a solution. The fan configuration influences the surrounding flow by either drawing it in or pushing it out, depending on the direction of rotation. Application of these fan-type wheels to a vehicle's wheels results in the redirection of flow inwards or outwards during high-speed driving due to wheel rotation.
Technical Paper

CAATS - Automotive Wind Tunnel Test Techniques

2024-04-09
2024-01-2543
This paper contributes to the Committee on Commonized Aerodynamics Automotive Testing Standards (CAATS) initiative, established by the late Gary Elfstrom. It is collaboratively compiled by automotive wind tunnel users and operators within the Subsonic Aerodynamic Testing Association (SATA). Its specific focus lies in automotive wind tunnel test techniques, encompassing both those relevant to passenger car and race car development. It is part of the comprehensive CAATS series, which addresses not only test techniques but also wind tunnel calibration, uncertainty analysis, and wind tunnel correction methods. The core objective of this paper is to furnish comprehensive guidelines for wind tunnel testing and associated techniques. It begins by elucidating the initial wind tunnel setup and vehicle arrangement within it.
Technical Paper

Experimental Investigation of Low-Frequency Flow Phenomena on the Vehicle Underbody Using Particle Image Velocimetry

2024-04-09
2024-01-2546
The increasing importance of minimizing drag and the absence of an exhaust system result in battery electric vehicles (BEVs) commonly having a very streamlined underbody. Although this shape of underbody is typically characterized by a low acoustic interference potential, significant flow resonance can be observed for certain vehicle configurations and frequencies below 30 Hz. Since the interior of the vehicle can be excited as a Helmholtz resonator, these low-frequency fluctuations result in reduced comfort for the passengers. As preliminary studies have shown, the flow around the front wheel spoilers significantly influences this flow phenomenon. Flow separation occurs at the front-wheel spoilers and at the front wheels. This leads to the generation of vortices which are growing significantly while being transported downstream with the flow. Even small geometric changes to add-on components on the underbody significantly influence both aerodynamics and aeroacoustics.
Technical Paper

A Mechanical Energy Control Volume Approach Applied to CFD Simulations of Road Vehicles

2024-04-09
2024-01-2524
This paper presents a mechanical energy control volume analysis for incompressible flow around road vehicles using results from Detached Eddy Simulation Computational Fluid Dynamics calculations. The control volume approach equates the rate of work done by surface forces of the vehicle to (i) the rate of work and kinetic energy flux at the control volume boundaries (particularly in the vehicle wake) and (ii) the rate of energy loss in the domain. At the downstream control volume boundary, the wake terms can be divided into lift-induced and profile drag terms. The rate of energy loss in the domain can be used as a volumetric analog for drag (drag counts/m3, when normalized). This allows for a quantitative break down of the contributions of different flow features/regions to the overall drag force.
Technical Paper

Development, Application, and Implementation of Passenger Vehicle Wind Averaged Drag for Vehicle Development

2024-04-09
2024-01-2532
A new methodology is discussed for the development and implementation of a wind-averaged drag analysis technique for the development of aerodynamic-driven surfaces for use in the automotive industry. Current methods of vehicle design focus on reducing the straight-line coefficient of drag using wind tunnel testing and computational fluid dynamics and quote this value as the vehicle's aerodynamic performance. It is suggested to transition passenger vehicle aerodynamic design to the methodology employed for Class-A vehicles and design with a focus on reducing the wind-averaged drag value. Based on the methods used in J1252, the wind averaged drag calculation method utilizes the average wind speed a vehicle will experience in the continental United States and assumes an equal probability of the wind coming from all directions relative to the vehicle. Wind-averaged drag will optimize vehicle design for real-world improvements of vehicle efficiency.
Technical Paper

Wheel Air Drag Prediction Technique Using WAD Parameter

2024-04-09
2024-01-2538
Wheel drag is generally known to be proportional to the wheel opening area. However, predicting wheel drag through opening area is still very difficult and inaccurate because there are many other factors that affect wheel drag. To more accurately and effectively predict wheel drag in the early styling design stage, we introduced the wheel average depth (WAD) parameter and developed S/W to calculate WAD. As a result of analyzing the correlation between WAD and wheel drag for HKMC's mass-produced wheels, the R2 value was greatly improved compared to the correlation between the existing wheel opening area and wheel drag, and the prediction accuracy was doubled.
Technical Paper

Front Bumper Dive During Maximum Braking of ABS-Equipped Vehicles

2024-04-09
2024-01-2469
Passenger vehicle bumpers are designed to reduce collision damage. If colliding bumpers are not vertically aligned, their effectiveness is reduced and the resulting damage increases. Two bumpers of similar static design heights may become misaligned due to bumper dive caused by one or both vehicles pitching forward due to braking. Previous researchers have quantified bumper dive and how it changed with passenger vehicle designs. Currently there are limited data available to quantify the mean, variance, and distribution of bumper dive for modern ABS-equipped vehicles. We conducted maximum braking tests using 3 late-model minivans/CUVs (crossover utility vehicles) and 9 late-model sedans on contiguous dry asphalt and concrete road surfaces. Between 16 and 23 tests were conducted for each vehicle and all tests were conducted from an initial speed of about 65 km/h (40 mph). A laser distance sensor mounted to the front bumpers measured bumper height throughout each test.
X