Refine Your Search

Search Results

Technical Paper

Synergized Mixed-Signal System-on-Chip (SoC) Design and Development using System-level Modeling and Simulation

2024-06-01
2024-26-0463
In recent decades, research based innovative system-on-chip (SoC) design has been a very important issue, due to the emerging trends and application challenges. The SoCs encompass digital, analog and mixed-signal hardware and software components and even sensors and actuators. Modelling and simulation constitute a powerful method for designing and evaluating complex systems and processes for many analysts and project managers as they engage in state of-the-art research and development. Modelling and simulations not only help them with the algorithm or concept realization and design feasibility, but it also allows experimentation, optimization, interpretation of results and validation of model.
Technical Paper

Design of Mini-Hexapod Rover System for Future Lunar Exploration

2024-06-01
2024-26-0456
Lunar tubes, natural underground structures on the Moon formed by ancient volcanic activity, offer natural protection from extreme temperatures, radiation, and micro-meteorite impacts, making them prime candidates for future lunar bases. However, the exploration of lunar tubes requires a high degree of mobility. Given the Moon's gravity, which is approximately six times weaker than Earth's, efficient navigation across rugged terrains within these lava tubes is achievable through jumping. In this work, we present the design of subsystems for a miniature hexapod rover weighing 1 kg, which can walk, jump, and stow. The walking system consists of two subsystems: one for in-plane walking, employing four single-degree-of-freedom (DOF) legs utilizing the KLANN walking mechanism, and another for directional adjustments before jumping. The latter employs a novel three-DOF mechanism employing a cable pulley mechanism to optimize space utilization.
Technical Paper

Stochastic Finite Element Formulation of a Three-Node Quadratic Bar Element with Non-Uniform Cross-Section Based on the Perturbation Method for Simultaneously Non-Deterministic Elastic Modulus and Applied Load

2024-06-01
2024-26-0470
The finite element method is one of the most robust tools in structural analysis. Typically, the input parameters in a finite element model are assumed to be deterministic. However, in practice, almost all material and geometrical properties, including the load, possess randomness. The consideration of the probabilistic nature of these quantities is essential to effectively designing a system that is robust against the uncertainties arising due to the variation in the input parameters, the significance of which has been documented by NASA in “Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners”, 2011. Among the various techniques applicable for stochastic analysis, the perturbation method, which is based on a sound mathematical foundation derived from Taylor’s series expansion, is widely acknowledged for its much higher efficiency compared to the well-known Monte-Carlo method.
Technical Paper

Simulation and Evaluation of Battery Aging in Electric Hybrid Storage Systems

2024-05-06
2024-01-2903
The extension of traction batteries from electric vehicles with supercapacitors is regularly discussed as a possibility to increase the lifetime of lithium-ion batteries as well as the performance of the vehicle drive. The objective of this work was to validate these assumptions by developing a simulation model. In addition, an economic analysis is performed to qualitatively classify the simulation results. Initially, a hybrid energy storage system consisting of battery and supercapacitor was developed. A semi-active hybrid energy storage topology was selected. Subsequently, the selection of use cases as well as the application-specific definition of load cycles took place. In addition, the control strategy was further developed so that a simulation on lifetime was made possible. The end-of-life of the battery cells was defined, according to the USABC guideline values.
Technical Paper

Model-based Knowledge Management in HV Battery Development

2024-05-06
2024-01-2902
In the dynamic landscape of battery development, the quest for improved energy storage and efficiency has become paramount. The contemporary energy transition, coupled with growing demands for electric vehicles, renewable energy sources, and portable electronic devices, has underscored the critical role that batteries play in our modern world. To navigate this challenging terrain and harness the full potential of battery technology, a well-defined and comprehensive data strategy resp. knowledge management strategy are indispensable. Conversely, the imminent and rapid progression of artificial intelligence (AI) is poised to have a substantial impact on the forthcoming landscape of work and the methodologies organizations employ for the management of their knowledge management (KM) procedures. Conventional KM endeavors encompass a spectrum of activities such as the creation, transmission, retention, and evaluation of an enterprise’s knowledge over the entire knowledge lifecycle.
Technical Paper

A Comparative Analysis of Thermal Runaway Propagation in Different Modular Lithium-Ion Battery Configuration

2024-05-06
2024-01-2901
Thermal runaway is a critical safety concern in lithium-ion battery systems, emphasising the necessity to comprehend its behaviour in various modular setups. This research compares thermal runaway propagation in different modular configurations of lithium-ion batteries by analysing parameters such as cell spacing and distribution, application of phase change materials (PCMs), and implementing insulating materials. The study at the module level includes experimental validation and employs a comprehensive model considering heat transfer due to electrical performance and thermal runaway phenomena. It aims to identify the most effective modular configuration for mitigating thermal runaway risks and enhancing battery safety. The findings provide valuable insights into the design and operation of modular lithium-ion battery systems, guiding engineers and researchers in implementing best practices to improve safety and performance across various applications.
Technical Paper

Numerical Approach for the Characterization of the Venting Process of Cylindrical Cells Under Thermal Runaway Conditions

2024-05-06
2024-01-2900
The increasing awareness on the harmful effects on the environment of traditional Internal Combustion Engines (ICE) is driving the industry toward cleaner powertrain technologies such as battery-driven Electric Vehicles. Nonetheless, the high energy density of Li-Ion batteries can cause strong exothermic reactions under certain conditions that can lead to catastrophic results, called Thermal Runaway (TR). Hence, a strong effort is being placed on understanding this phenomena and increase battery safety. Specifically, the vented gases and their ignition can cause the propagation of this phenomenon to adjancent batteries in a pack. In this work, Computational Fluid Dynamics (CFD) are employed to predict this venting process in a LG18650 cylindrical battery. The ejection of the generated gases was considered to analyze its dispersion in the surrounding volume through a Reynolds-Averaged Navier-Stokes (RANS) approach.
Technical Paper

Statistical Analysis on Wear Behavior of Aluminum Alloy2024–Silicon Carbide–Fly Ash Metal Matrix Composites

2024-05-06
2024-01-5058
Aluminum and its alloys entered a main role in the engineering sectors because of their applicable characteristics for indispensable applications. To enhance requisite belongings for the components, the composition of variant metal/nonmetal with light metal alloys is essential in the manufacturing industries. To enhance the wear resistance with significant strength property of the aluminum alloy 2024, the reinforcement SiC and fly ash (FA) were added with the designation Al2024 + 10% SiC; Al2024 + 5% SiC + 5% FA; and Al2024 + 10% FA via stir-casting technique. The wear resistance property of the composites was tested in pin-on-disc with a dry-sliding wear test procedure. The experiment trials were designed in Box–Behnken design (BBD) by differing the wear test parameters like % of reinforcement, sliding distance (m), and load (N).
X