Refine Your Search

Search Results

Technical Paper

Hierarchical Vehicle Stability Control Strategy Based on Unscented Kalman Filter Estimation

2022-03-29
2022-01-0294
High-speed vehicle is prone to instability under bad road conditions, causing many safety accidents such as tail-flicking and overturning. Stability control could assist vehicle to drive safely and stably by adjusting the additional yaw moment. However, most of the existing stability control strategies directly invoke the information of the sideslip angle of the centroid that is difficult to obtain on the vehicle, and carry out complex controller design, which deviates from the actual application. In order to achieve a complete set of stability control architecture oriented to practical applications, this paper designs a hierarchical vehicle stability control strategy based on differential braking and state estimation technology.
Technical Paper

A Pin-on-Disc Study on the Electrified Sliding Wear of EVs Powertrain Gears

2022-03-29
2022-01-0320
In contrast to conventional powertrains from internal combustion engine vehicles (ICEV), the tribological performance of powertrains of electric vehicles (EVs) must be further evaluated by considering new critical operating conditions such as electrical environments. The operation of any type of electric motor produces shaft voltages and currents due to various hardware configurations and factors. Furthermore, the common application of inverters intensifies this problem. It has been reported that the induced shaft voltages and currents can cause premature failure problems in tribological components such as bearings and gears due to accelerated wear and/or fatigue. It is ascribed to effects of electric discharge machining (EDM), also named, sparking wear caused by shaft currents and poor or increasingly diminishing dielectric strength of lubricants. A great effort has been done to study this problem in bearings, but it has not yet been the case for gears.
Journal Article

Optimal Chassis Suspension Design for Towbarless Towing Vehicle for Aircraft Taxiing

2022-03-29
2022-01-0291
The towbarless aircraft taxiing system (TLATS) consists of the towbarless towing vehicle (TLTV) and the aircraft, of which the nose wheel is lifted and fixed by the picking up and holding system of the TLTV. The aircraft is towed to the destination in a long distance with a high speed of about 40 km/h only driven by the TLTV, which has the advantages of efficiency and economy by comparing with the traditional towing operation at a low speed of 5 km/h and with a short towing distance of about 50 m. However, the increase of the towing velocity leads to an deteriorate vibration problem in terms of the uncomfortable of the driver and reduction of the structure safe life limit, due to the lack of the chassis suspension for the vibration isolation of the TLTV. Therefore, the air suspension is introduced to the TLTV to alleviate the vibration. The dynamic model of the TLATS with air suspensions is derived.
Technical Paper

Active Brake Wheel Cylinder Pressure Control Based On Integrated Electro-Hydraulic Brake System

2022-03-29
2022-01-0293
With the development of the automobile industry, the requirements of quick response and high performance are put forward for the brake system. Since the traditional brake system cannot achieve these, the international brake parts manufacturers put forward an integrated electro-hydraulic brake system -the 1-Box. It can realize active brake through the servo motor. In addition, by controlling the pressure of the servo cylinder and working with solenoid valves, the wheel cylinder pressure can be controlled. However, it has some problems, such as hydraulic hysteresis disturbance and complex friction obstruction, which cause obstacles to the accurate control of wheel cylinder pressure. In this paper, the active braking pressure control strategy of wheel cylinders is designed based on 1-Box.
Technical Paper

Enhanced SAE 3 link Leaf Spring Model to Generate Durability Virtual Loads

2022-03-29
2022-01-0289
Heavy-duty truck vehicles are generally equipped with leaf spring suspensions. Conventionally, beam elements are used in multibody software to build the leaf spring model to calculate virtual loads. Beam elements require a high computation time due to their numerous degrees of freedoms and force components introduced by beam connections, interleaf contacts, friction, etc. Again, in these simulations, solvers frequently fail in durability loads analysis due to sudden spike in accelerations and high suspension articulation coming from severe road profiles. These drawbacks lead to the use of simplified three-link mechanism models to simulate the leaf spring’s behavior, which is computationally faster. However, the current approach is less accurate as compared to the beam element model because this model has only a torsional spring which accounts for vehicle bounce condition.
Technical Paper

Morphological Characterization of ABS and PC-ABS Surfaces for Automotive Industry

2022-03-29
2022-01-0333
In the automotive industry, the measurement, control and reproducibility of certain morphological characteristics of surfaces are important to characterize, qualify, certify and optimize different physical properties, such as the degree of wear, the degree of adhesion by adhesives, glues or paints and optical properties. In this regard, this work is intended demonstrate how it is possible to characterize different surfaces in ABS (Acrylonitrile Butadiene Styrene) and PC-ABS (PolyCarbonate/Acrylonitrile Butadiene Styrene) through a set of morphological parameters defined according to the ISO 25178 standard. These surfaces have been subjected to different etching treatments performed with different chemicals, which can radically modify the morphology of the surface, making it more or less suitable according to the industrial purposes sought.
Technical Paper

An Approach for Integration of RTM Process Simulation

2022-03-29
2022-01-0326
In the preform preparation stage of the RTM process, the fabric is draped on the mold along the geometry. Before the filling and warpage analysis, the draping analysis will be performed to get the fabric orientation. Due to the anisotropy of the fabric material, the main direction of the material has a significant influence on the overall flow behavior and warpage of the product. In this study, the advanced simulation approach for the RTM process is demonstrated. The filling and warpage analysis integrate with the draping simulation result. The influences of fabric shearing and fiber orientation on the resin flow and product warpage in RTM process is studied. With more accurate fabric orientation prediction methods, the accuracy of predicting fabric ply orientation is improved and more accurate infusion and product warpage simulation results can be obtained.
Technical Paper

Developments of Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) Project

2022-03-29
2022-01-0341
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project that developed structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components were selected for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Technical Paper

Humanized Steering Wheel Quality Design and Upgrade Model Construction

2022-03-29
2022-01-0340
Automotive interior is a complex system of multi-element integration. The feeling quality and design of automobile interior embody automobile quality. The steering wheel is the main control mechanism of the car. Therefore, the feeling quality and design of the steering wheel are very important. The steering wheel will profoundly impact the user’s psychological experience. The steering wheel sizes of several models are collected in this paper. Then it performs a more thorough analysis of all aspects of the steering wheel. The steering wheel is a multi-element carrier. Combine the ergonomics theory with the steering wheel design procedure. The steering wheel’s feel quality while driving can be improved using this strategy. It can not only suit the human body’s needs when driving but also increase the comfort of the driver. The shape of the steering wheel, the layout design, and the color design of the keys, for example, are all design aspects.
Technical Paper

High Performance Unfilled Polypropylene Material for Light Weight Interior Trims

2022-03-29
2022-01-0338
Light weighting is important to improve energy efficiency in the automotive industry. In this paper, high performance unfilled polypropylene copolymer (PPCP) material was selected and developed to reduce weight and cost without compromising on functional requirements for interior trims such as door trims, lower pillar trims, scuff trims and rear quarter trims (RQT). Interior trims are loaded with challenging requirements such as stiffness, dimensional stability, haptic feel, scratch resistance, cleanability, thermal stability, toughness, low emission and weathering resistance. Reactor polymerized PPCP material compound met these requirements by having ultra-flow behavior, optimum tensile strength, balanced modulus - impact strength, scratch resistant, low emission and improved thermal properties. This is a ready to mold material used in injection molding process. This unfilled polypropylene copolymer material has been explored for thin wall interior trims with thickness of 2.5mm.
Technical Paper

Exploring New Joining Techniques of CFRP Cross Member Chassis

2022-03-29
2022-01-0337
Increasing fuel prices and escalating emissions standards, are leading car manufacturers to develop vehicles with higher fuel efficiency. Reducing the mass of the vehicle is one technique to improve fuel efficiency. Shifting from metals to composite materials is a promising approach for great reductions to the vehicle mass. As more composite parts are introduced into vehicles, the approach to joining components is changing and requiring more investigation. Metallic chassis components are traditionally joined with mechanical fasteners, while composites are generally joined with adhesives. In a collaboration between Queen’s University and KCarbon, an automotive composite crossmember is being developed. A variety of lap joint geometries were modeled into a the crossmember assembly for composite-composite joints. Finite element-based optimization methods were applied to reduce mass of the crossmember. The optimized masses showed a 5% difference between the three joint geometries analyzed
Technical Paper

Variable Axial Composite Lightweight Automotive Parts Using Anisotropic Topology Optimization and Tailored Fiber Placement

2022-03-29
2022-01-0344
This paper presents a design method for continuous fiber composites in three-dimensional space with locally varying orientation distribution and their fabrication method. The design method is formulated based on topology optimization by augmented tensor field design variables. The fabrication method is based on Tailored Fiber Placement technology, whereby a CNC embroidery machine prepares the preform. The fiber path is generated from an optimized orientation distribution field. The preform is formed with vacuum-assisted resin transfer molding. The fabricated prototype weighs 120 g, a 70% weight reduction, achieving 3.5× mass-specific stiffness improvement.
Technical Paper

Research on Sound Insulation Characteristics and Application of Acoustic Metamaterials

2022-03-29
2022-01-0343
In the field of low-frequency noise control, the acoustic metamaterials have received extensive attention from researchers. However, the existing work mainly focuses on small structures with fixed boundaries, which is quite different from engineering applications. Based on the membrane-type acoustic metamaterials, this paper uses a rigid thin plate to replace the tensioned membrane, design and manufacture of two new types of local resonance structure and studies their sound insulation properties. First, the metamaterial samples with a small size of 100mm in diameter and a large-size square with a side length of 506mm were produced, and the sound TL of the two was tested through the impedance tube and the reverberation chamber-anechoic chamber, respectively. The results show that the new structure can form an obvious sound insulation frequency band at low frequencies. Based on the finite element method, a metamaterial acoustic transmission loss calculation model is established.
Journal Article

Axial Turbine Turbocharger for Charging a Lean-Burn Gasoline Engine

2022-03-29
2022-01-0377
A single-stage turbocharger turbine is developed with the objective of enabling a gasoline spark-ignition engine to operate under lean-burn conditions with an air-to-fuel ratio of λ=2 in the range of the Worldwide Harmonized Light-Duty Vehicles Test Cycle. For this purpose, extensive 1-D engine simulations are performed using a combination of a simple compressor and simple turbine model as well as a combination of the stock compressor and a simple turbine model. The results show that an isentropic turbine efficiency of more than 70% over a wide operating range is required for the desired engine operation - especially with regard to the low-end-torque. Based on the crank-angle-resolved engine simulation data, turbine requirements are determined. Their evaluation shows that an axial turbine is a reasonable alternative to conventional radial turbines for this application. Next, a preliminary axial turbine is designed using 1-D/2-D design approaches.
Technical Paper

Investigation and Comparison of the Prediction Capabilities of Multiple 0D/1D Combustion Calibration Strategies Using different Turbocharger Systems as Calibration Basis

2022-03-29
2022-01-0378
Reliably calibrated simulation and combustion models not only enable the prediction of non-validated operating points, but also compensate for the time that would be required for costly test bench measurements. Under the premise of investigating various turbocharging concepts for a combustion engine without the need for recalibration, the present work will discuss the influence of two different exhaust gas turbocharger systems on model calibration. Replacing turbochargers is a practical way to test the predictive performance of simulations, since they can drastically affect and change the thermodynamic boundary conditions for comparable operating points. On the one hand, the choice of the appropriate calibration strategy and, on the other hand, the interchangeability of the respective calibration will be discussed.
Technical Paper

Structural Flow Properties in IC Engine-Relevant Piston-Cylinder Configurations: An Eddy-Resolving Modelling Study

2022-03-29
2022-01-0399
The feasibility of a recently developed eddy-resolving model of turbulence, termed as Very LES (Large-Eddy-Simulation), was tested by simulating the flow dynamics in two moving piston-cylinder assemblies. The first configuration deals with the compression of a tumbling vortex generated during the intake process within a cylinder with the square cross-sectional area, for which the reference experimental database was made available by Borée et al. (2002). The second piston-cylinder assembly represents a realistic motored IC-Engine (Internal-Combustion Engine) with the multiple Y-shaped intake and outtake ducts in which the movable valves are accommodated. The boundary and operating conditions correspond to the experimental study performed by Baum et al. (2014). The VLES simulation model applied presently is a seamless eddy-resolving hybrid RANS/LES (Reynolds-Averaged Navier-Stokes / Large-eddy Simulation) model.
Technical Paper

Numerical and Experimental Studies of a Novel Dimpled Stepped-Lip Piston Design on Turbulent Flow Development in a Medium-Duty Diesel Engine

2022-03-29
2022-01-0400
Spray-wall interactions in diesel engines have a strong influence on turbulent flow evolution and mixing, which influences the engine’s thermal efficiency and pollutant-emissions behavior. Previous optical experiments and numerical investigations of a stepped-lip diesel piston bowl focused on how spray-wall interactions influence the formation of squish-region vortices and their sensitivity to injection timing. Such vortices are stronger and longer-lived at retarded injection timings and are correlated with faster late-cycle heat release and soot reductions, but are weaker and shorter-lived as injection timing is advanced. Computational fluid dynamics (CFD) simulations predict that piston bowls with more space in the squish region can enhance the strength of these vortices at near-TDC injection timings, which is hypothesized to further improve peak thermal efficiency and reduce emissions. The dimpled stepped-lip (DSL) piston is such a design.
Technical Paper

Understanding Pre-Chamber Combustion Performance in a Closed-Cycle Model of a Novel Rotary Engine

2022-03-29
2022-01-0396
A closed-cycle computational model of a non-Wankel rotary engine was thoroughly investigated to achieve optimal efficiencies, in a multitude of loading conditions relevant to automotive and aeronautical applications. Computational fluid dynamics (CFD) modeling was conducted in CONVERGE CFD, targeting the operation of a single pre-chamber and downstream main chamber engine system, roughly from 100 crank angle degrees (CAD) before top dead center (bTDC) to 100 CAD after top dead center (aTDC). In the developed framework, optimization studies involved main decision variables, including the engine’s compression ratio (CR), the injector’s position within the pre-chamber, the injector’s nozzle hole count and nozzle hole diameters. Traditional and split-injection strategies for the introduction of diesel fuel into the pre-chamber were evaluated by varying spray-related parameters including total injected mass, injection pressure, start of injection(s), and injection duration(s).
Technical Paper

Multidimensional CFD Studies of Oil Drawdown in an i-4 Engine

2022-03-29
2022-01-0397
A computational study based on unsteady Reynolds-Averaged-Navier-Stokes that resolves the gas-liquid interface was performed to examine the unsteady multiphase flow in a 4 cylinder Inline (i-4) engine. In this study, the rotating motion of the crankshaft and reciprocating motion of the pistons were accounted for to accurately predict the oil distribution in various parts of the engine. Three rotational speeds of the crankshaft have been examined: 1000, 2800, and 4000 rpm. Of particular interest is to examine the mechanisms governing the process of oil drawdown from the engine head into the case. The oil distributions in other parts of the engine have also been investigated to understand the overall crankcase breathing process. Results obtained show the drawdown of oil from the head into the case to be strongly dependent on the venting strategy for the foul air going out of the engine through the PCV system.
Technical Paper

Adaptive Cycle Engines: Results with 2nd Generation Combustion Model

2022-03-29
2022-01-0421
A more accurate combustion model, based on Fluent simulations including the effect of flame stretching and extinction, has been added to cycle and road simulations of an Adaptive Cycle Engine (ACE), where compressions and expansions do not follow a predefined sequence. Also, engine speed data from the Argonne Downloadable Dynamometer Database is used in the road simulations in lieu of the original constant-speed model. Results show a drop in predicted steady-state brake efficiency and bmep around 15% relative to the model using a standard Wiebe function for heat release rate. Performance on road cycles is not greatly affected by the delayed combustion since the relationship between expansion mass and work is largely unchanged. Even with the refined model, future ACE-equipped vehicles are expected to be competitive with electric powertrains in pre-tax cost and overall emissions.
X