Refine Your Search

Search Results

Technical Paper

“The Network Vehicle - A Glimpse into the Future of Mobile Multi-Media”

1998-11-09
982901
The Network Vehicle is the Delphi Automotive Systems' vision for the future convergence of the communications infrastructure, computers, and the automobile. It features many advanced functions such as: satellite video, Internet access, virtual navigation, remote vehicle diagnostics and control, games, mobile office, automotive web site, and customized real-time stock quotes and sports scores. These features are enabled by an integrated planar antenna that is capable of multiple satellite reception, a client-server network architecture, and unique human-vehicle-interfaces. The software application is written in Java, using API's (Application Programming Interfaces) to reduce the complexity and cost of the source code.
Technical Paper

Dynamic Viscoelasticity of an ER Fluid in Oscillatory Slit Flow and its ER Micro-Structural Mechanism

1998-11-09
982894
An electrorheological fluid composed of sulfonated polymer particles in insulating oil is analyzed on nonlinear dynamic viscoelasticity in oscillatory slit flow. The viscoelastic properties are determined as a function of the electric field, the fluid strain amplitude and the oscillation frequency, and changes in the ER microstructure are studied by direct observation performed by an optical microscope. The results showed that the viscoelastic properties of the ER fluid remarkably depend on the electric field strength and on the strain amplitude. However, no dependence on the oscillation frequency was observed in the range of 2.5 to 6.9 Hz. These dependencies are explained based on the formation and deformation of ER particle clusters that span the electrodes under oscillatory slit flow. All the results are discussed in terms of pre-yield, yield and post-yield region.
Technical Paper

Performance Charts: A Complete Analysis of Heavy Vehicle Braking Performance

1998-11-09
982915
The aim of this paper is introduce an original and innovative technique called performance charts to obtain the performance of heavy vehicles during braking process. Several performance charts are shown for an example heavy vehicle and are discussed the results obtained, that include values of stopping distance, maximum and average deceleration, efficiency and others obtained during the braking process of the example vehicle. As well is shown the importance of the application of this technique on the braking system definition process of heavy vehicles, on the orientation of the users of these vehicles or fleet-owner and on the verification of legal requirements established by regulations of braking performance of these vehicles.
Technical Paper

First Crash Test of the New Conceptual Pliers Underride Guard

1998-11-09
982879
The mechanical principle of a simple pliers tool was applied to design a new energy absorbing rear underride guard. The guard, consisting of a hanging steel frame held by a steel cables net, could avoid underride of a GM Vectra at 64 km/h colliding in 50% offset. Injury criteria measured at Hybrid 3 dummies showed a low crash severity (HIV = 381). The guard needs, however, further optimization to become commercially feasible.
Technical Paper

Biomechanical Analysis of Indy Race Car Crashes

1998-11-02
983161
This paper describes the results of an ongoing project in the GM Motorsports Safety Technology Research Program to investigate Indianapolis-type (Indy car) race car crashes using an on-board impact recorder as the primary data collection tool. The paper discusses the development of specifications for the impact-recording device, the selection of the specific recorder and its implementation on a routine basis in Indy car racing. The results from incidents that produced significant data (crashes with peak decelerations above 20 G) during the racing seasons from 1993 through the first half of 1998 are summarized. The focus on Indy car crashes has proven to provide an almost laboratory-like setting due to the similarity of the cars and to the relative simplicity of the crashes (predominantly planar crashes involving single car impacts against well-defined impact surfaces).
Technical Paper

Development of an Improved Thoracic Injury Criterion

1998-11-02
983153
In an effort to better understand thoracic trauma in frontal impacts, seventy-one frontal impact sled tests were conducted using post-mortem human subjects in the driver's position. Various contemporary automotive restraint systems were used in these tests. The post-mortem subjects were instrumented with accelerometers and chest bands to characterize their mechanical response during the impact. The resulting injury from the impact was determined through radiography and detailed autopsy and its severity was coded according to the Abbreviated Injury Scale. The measured mechanical responses were analyzed using statistical procedures. In particular, linear logistic regression was used to develop models which associate the measured mechanical parameters to the observed thoracic injury response. Univariate and multivariate models were developed taking into consideration potential confounders and effect modifiers.
Technical Paper

SID-IIs Beta+-Prototype Dummy Biomechanical Responses

1998-11-02
983151
This paper presents the results of biomechanical testing of the SID-IIs beta+-prototype dummy by the Occupant Safety Research Partnership. The purpose of this testing was to evaluate the dummy against its previously established biomechanical response corridors for its critical body regions. The response corridors were scaled from the 50th percentile adult male corridors defined in International Standards Organization Technical Report 9790 to corridors for a 5th percentile adult female, using established International Standards Organization procedures. Tests were performed for the head, neck, shoulder, thorax, abdomen and pelvis regions of the dummy. Testing included drop tests, pendulum impacts and sled tests. The biofidelity of the SID-IIs beta+-prototype was calculated using a weighted biomechanical test response procedure developed by the International Standards Organization.
Technical Paper

A Mathematical Human Body Model for Frontal and Rearward Seated Automotive Impact Loading

1998-11-02
983150
Mathematical modelling is widely used for crash-safety research and design. However, most occupant models used in crash simulations are based on crash dummies and thereby inherit their apparent limitations. Several models simulating parts of the real human body have been published, but only few describe the entire human body and these models were developed and validated only for a limited range of conditions. This paper describes a human body model for both frontal and rearward loading. A combination of modelling techniques is applied using rigid bodies for most body segments, but describing the thorax as a flexible structure. The skin is described in detail using an arbitrary surface. Static and dynamic properties of the articulations have been derived from literature. The RAMSIS anthropometric database has been used to define a model representing a 50th percentile male.
Technical Paper

Investigation into the Noise Associated with Airbag Deployment: Part II - Injury Risk Study Using a Mathematical Model of the Human Ear

1998-11-02
983162
Airbag deployments are associated with loud noise of short duration, called impulse noise. Research performed in the late 1960's and early 1970's established several criteria for assessment of the risk of impulse noise-induced hearing loss for military weapons and general exposures. These criteria were modified for airbag noise in the early 1970's, but field accident statistics and experimental results with human volunteers exposed to airbags do not seem to agree with the criteria. More recent research on impulse noise from weapons firing, in particular that of Price & Kalb of the US Army Research Laboratory, has led to development of a mathematical model of the ear. This model incorporates transfer functions which alter the incident sound pressure through various parts of the ear. It also calculates a function, called the “hazard”, that is a measure of mechanical fatigue of the hair cells in the inner ear.
Technical Paper

Mechanical Properties of the Cadaveric and Hybrid III Lumbar Spines

1998-11-02
983160
This study identified the mechanical properties of ten cadaveric lumbar spines and two Hybrid III lumbar spines. Eight tests were performed on each specimen: tension, compression, anterior shear, posterior shear, left lateral shear, flexion, extension and left lateral bending. Each test was run at a displacement rate of 100 mm/sec. The maximum displacements were selected to approximate the loading range of a 50 km/h Hybrid III dummy sled test and to be non-destructive to the specimens. Load, linear displacement and angular displacement data were collected. Bending moment was calculated from force data. Each mode of loading demonstrated consistent characteristics. The load-displacement curves of the Hybrid III lumbar spine demonstrated an initial region of high stiffness followed by a region of constant stiffness.
Technical Paper

Upper Neck Response of the Belt and Air Bag Restrained 50th Percentile Hybrid III Dummy in the USA's New Car Assessment Program

1998-11-02
983164
Since 1994, the New Car Assessment Program (NCAP) of the National Highway Traffic Safety Administration (NHTSA) has compiled upper neck loads for the belt and air bag restrained 50th percentile male Hybrid III dummy. Over five years from 1994 to 1998, in frontal crash tests, NCAP collected upper neck data for 118 passenger cars and seventy-eight light trucks and vans. This paper examines these data and attempts to assess the potential for neck injury based on injury criteria included in FMVSS No. 208 (for the optional sled test). The paper examines the extent of serious neck injury in real world crashes as reported in the National Automotive Sampling System (NASS). The results suggest that serious neck injuries do occur at higher speeds for crashes involving occupants restrained by belts in passenger cars.
Technical Paper

Head-Neck Kinematics in Dynamic Forward Flexion

1998-11-02
983156
Two-dimensional film analysis was conducted to study the kinematics of the head and neck of 17 restrained human volunteers in 24 frontal impacts for acceleration levels from 6g to 15g. The trajectory of the head center of gravity relative to upper torso reference points and the rotation of head and neck relative to the lower torso during the forward motion phase were of particular interest. The purpose of the study was to analyze the head-neck kinematics in the mid-sagittal plane for a variety of human volunteer frontal sled tests from different laboratories using a common analysis method for all tests, and to define a common response corridor for the trajectory of the head center-of-gravity from those tests.
Technical Paper

The Effect of Postmortem Time and Freezer Storage on the Mechanical Properties of Skeletal Muscle

1998-11-02
983155
Investigators currently lack the data necessary to define the state of skeletal muscle properties within the cadaver. The purpose of this study is to define the temporal changes in the postmortem properties of skeletal muscle as a function of mechanical loading and freezer storage. The tibialis anterior of the New Zealand White rabbit was chosen for study. Modulus and no-load strain were found to vary significantly from live after eight hours postmortem. Following the dynamic changes which occur at the onset and during rigor mortis, a semi-stable region of postmortem, post-rigor properties occurred between 36 to 72 hours postmortem. A freeze-thaw process was not found to have a significant effect on the post-rigor response. The first loading cycle response of post-rigor muscle was unrepeatable but stiffer than live passive muscle.
Technical Paper

Biomechanical Assessment of Human Cervical Spine Ligaments

1998-11-02
983159
There is an increasing need to accurately define the soft tissue components of the human cervical spine in order to develop and exercise mathematical analogs such as the finite element model. Currently, a paucity of data exists in the literature and researchers have constantly underscored the need to obtain accurate data on cervical spine ligaments. Consequently, the objective of the study was to determine the geometrical and biomechanical properties of these ligaments from the axis to the first thoracic level. A total of thirty-three human cadavers were used in the study. Geometrical data included the length and cross-sectional area measurements; and the biomechanical properties included the force, deflection, stiffness, energy, stress, strain, and Young's modulus of elasticity data. Data were obtained for the following ligaments: anterior and posterior longitudinal ligaments, joint capsules, ligamentum flavum, and interspinous ligament.
Technical Paper

Development of a Finite Element Model of the Human Neck

1998-11-02
983157
A three-dimensional finite element model of a human neck has been developed in an effort to study the mechanics of cervical spine while subjected to impacts. The neck geometry was obtained from MRI scans of a 50th percentile male volunteer. This model, consisting of the vertebrae from C1 through T1 including the intervertebral discs and posterior elements, was constructed primarily of 8-node brick elements. The vertebrae were modeled using linear elastic-plastic materials, while the intervertebral discs were modeled using linear viscoelastic materials. Sliding interfaces were defined to simulate the motion of synovial facet joints. Anterior and posterior longitudinal ligaments, facet joint capsular ligaments, alar ligaments, transverse ligaments, and anterior and posterior atlanto-occipital membranes were modeled as nonlinear bar elements or as tension-only membrane elements. A previously developed head and brain model was also incorporated.
Technical Paper

Thoracic Injury Risk in Frontal Car Crashes with Occupant Restrained with Belt Load Limiter

1998-11-02
983166
In France, as in other countries, accident research studies show that the greatest proportion of restrained occupants sustaining severe injuries and fatalities are involved in frontal impact (70% and 50% respectively). In severe frontal impacts with restraint occupants and where intrusion is not preponderant, the oldest occupants very often sustain severe thoracic injuries due to the seat belt. In the seventies, a few cars were equipped in France with load limiters and it was thereby possible to observe a relationship between the force applied and the occupant's age with regard to this thoracic risk. The reduction of intrusion for the most violent frontal impacts, through optimization of car deformation, usually translates into an increase in restraint forces and hence thoracic risks with a conventional retractor seat belt for a given impact violence.
Technical Paper

Analytical Investigation of Driver Thoracic Response to Out of Position Airbag Deployment

1998-11-02
983165
A finite element model of the human thorax was merged with a rigid body finite element implementation of the Hybrid III dummy (after removal of the Hybrid III thorax) and the combined model is used in simulations of an out of position driver during airbag deployment. Parameters related to injury, such as A-P thorax deformation, Viscous Criterion, rib stress distribution and strain in the thoracic contents are used to quantify the thoracic injury response. Initial driver position is varied to examine the relationship between distance from the airbag module and thoracic injury risk. The potential for injury mitigation through modulation of airbag inflation after initiation is also investigated. The utility of the combined model as an effective tool for the analysis of occupant kinematics and dynamics, examination of injury mechanisms, and optimization of restraint system design parameters is demonstrated.
Technical Paper

Development of a 3D Finite Element Model of the Human Body

1998-11-02
983152
Computational techniques are being used more and more in automotive safety engineering. However there is still a need for further development of biofidelic tools for assessing human responses in crash situations. We therefore designed a 3D finite element model of the human body and constituted a large experimental database for the purpose of validation. The geometry of the seated 50th percentile adult male was chosen for the model. The number of elements used to represent the anatomy was limited to 10 000. The material laws come from existing literature and, when necessary, parameter identification processes were used. Special attention was paid to the constitution of the validation database. Boundary conditions and results from most of the available cadaver and volunteer experiments were analyzed. In total, more than 30 test configurations were selected.
Technical Paper

Finite Element Modeling Approaches for Predicting Injury in an Experimental Model of Severe Diffuse Axonal Injury

1998-11-02
983154
Traumatic brain injury finite element analyses have evolved from crude geometric representations of the skull and brain system into sophisticated models which take into account distinct anatomical features. However, two distinct finite element modeling approaches have evolved to account for the relative motion that occurs between the skull and cerebral cortex during traumatic brain injury. The first and most common approach assumes that the relative motion can be estimated by representing the cerebrospinal fluid inside the subarachnoid space as a low shear modulus, virtually incompressible solid. The second approach assumes that the relative motion can be approximated by defining a frictional interface between the cerebral cortex and dura mater. This study presents data from an experimental model of traumatic brain injury coupled with finite element analyses to evaluate the modeling approach's ability to predict specific forms of traumatic brain injury.
X