Refine Your Search

Search Results

Technical Paper

Suitability Study of n-Butanol for Enabling PCCI and HCCI and RCCI Combustion on a High Compression-ratio Diesel Engine

2015-09-01
2015-01-1816
This work investigates the suitability of n-butanol for enabling PCCI, HCCI, and RCCI combustion modes to achieve clean and efficient combustion on a high compression ratio (18.2:1) diesel engine. Systematic engine tests are conducted at low and medium engine loads (6∼8 bar IMEP) and at a medium engine speed of 1500 rpm. Test results indicate that n-butanol is more suitable than diesel to enable PCCI and HCCI combustion with the same engine hardware. However, the combustion phasing control for n-butanol is demanding due to the high combustion sensitivity to variations in engine operating conditions where engine safety concerns (e.g. excessive pressure rise rates) potentially arise. While EGR is the primary measure to control the combustion phasing of n-butanol HCCI, the timing control of n-butanol direct injection in PCCI provides an additional leverage to properly phase the n-butanol combustion.
Technical Paper

Effect of Fuel Aromatics on In-Flame Diesel Soot Nanostructure via HRTEM

2015-09-01
2015-01-1829
In order to examine the effect of fuel aromatics on soot processes in diesel flame, nanostructure and morphology of soot particles directly sampled in a diesel flame were investigated via High-Resolution Transmission Electron Microscopy (HRTEM). Three test fuels with different aromatic contents, aromatic-free Fischer-Tropsch Diesel (FTD), naphthalene-added (65,000ppm) FTD and conventional JIS#2 diesel fuels were used. TEM grids were directly exposed to single-shot diesel flames in a constant volume combustion chamber under a diesel-like condition with EGR (1000K, 2.7MPa, 15%O2) to thermophoretically sample soot particles at different axial locations from 40 to 120mm from nozzle. The soot nanostructure such as length, tortuosity and separation of lattice fringes in primary particles and morphology such as primary particle diameter and aggregate gyration radius were analyzed and compared among different fuels and in-flame locations.
Technical Paper

Effects of Hydrogen Ratio and EGR on Combustion and Emissions in a Hydrogen/Diesel Dual-Fuel PCCI Engine

2015-09-01
2015-01-1815
The effects of hydrogen ratio and exhaust gas recirculation (EGR) on combustion and emissions in a hydrogen/diesel dual-fuel premixed charge compression ignition (PCCI) engine were investigated. The control of combustion phasing could be improved using hydrogen enrichment and EGR due to the retarded combustion phasing with a higher hydrogen ratio. The indicated mean effective pressure (IMEP) was increased with a higher hydrogen ratio because the hydrogen enrichment intensified the high temperature reactions and thus decreased the combustion duration. Hydrocarbon (HC) and carbon monoxide (CO) emissions were reduced significantly in a hydrogen/diesel dual-fuel PCCI mode with a similar NOx emissions level as that of the diesel PCCI mode.
Technical Paper

Assessment of the Ignition and Lift-off Characteristics of a Diesel Spray with a Transient Spreading Angle

2015-09-01
2015-01-1828
Multi-hole diesel fuel injectors have shown significant transients in spreading angle during injections, different than past fundamental research using single-hole injectors. We investigated the effect of a this transient spreading angle on combustion parameters such as ignition delay and lift-off length by comparing a three-hole nozzle (Spray B) and single-hole nozzle (Spray A) with holes of the same size and shape as targets for the Engine Combustion Network (ECN). With the temperature distribution for a target plume of Spray B characterized extensively in a constant-volume combustion chamber, the ignition delay and lift-off length were measured and compared. Results show that the lift-off length of Spray B increases and grows by approximately 1.5 mm after the initial stages of ignition, in an opposite trend compared to Spray A where the lift-off length decreases with time.
Technical Paper

Reduction of Methane Slip Using Premixed Micro Pilot Combustion in a Heavy-Duty Natural Gas-Diesel Engine

2015-09-01
2015-01-1798
An experimental study has been carried out with the end goal of minimizing engine-out methane emissions with Premixed Micro Pilot Combustion (PMPC) in a natural gas-diesel Dual-Fuel™ engine. The test engine used is a heavy-duty single cylinder engine with high pressure common rail diesel injection as well as port fuel injection of natural gas. Multiple variables were examined, including injection timings, exhaust gas recirculation (EGR) percentages, and rail pressure for diesel, conventional Dual-Fuel, and PMPC Dual-Fuel combustion modes. The responses investigated were pressure rise rate, engine-out emissions, heat release and indicated specific fuel consumption. PMPC reduces methane slip when compared to conventional Dual-Fuel and improves emissions and fuel efficiency at the expense of higher cylinder pressure.
Technical Paper

Investigation into the Effect of Flame Propagation in the Gasoline Compression Ignition by Coupling G-Equation and Reduced Chemical Kinetics Combustion Model

2015-09-01
2015-01-1799
Gasoline Compression Ignition has been widely studied in recent years. The in-cylinder stratified charge in gasoline Partially Premixed Compression Ignition (PPCI) can extend the high load range with lower pressure rise rate than Homogeneous Charge Compression Ignition (HCCI). However, it is still not clear that whether there is flame propagation in the gasoline compression igntion mode and how the flame propagation influences the combustion process and pollution formation. In order to investigate the effect of flame, several gasoline compression ignition cases, including the single-stage and two-stage heat release processes, are simulated with the KIVA-3V Release 2 code in this study. The G-equation is employed to account for flame propagation, and the reduced i-octane/n-heptane mechanism is used to handle the chemical reactions. The results show that the flame propagation exists in the combustion process and it can accelerate the heat release slightly.
Technical Paper

Effect of Low Octane Gasoline on Performance of a HCCI Engine with the Blowdown Supercharging

2015-09-01
2015-01-1814
In this study, the effect of the low octane number fuel on HCCI engine performance was experimentally investigated using a slightly modified commercial four-cylinder gasoline engine. To operate the engine in HCCI strategy with wide operational range, the blowdwon supercharging (BDSC) system proposed by the authors was applied in the test engine. Research octane number (RON) of test fuels was varied from 90 to 78.5 as an experimental parameter. Experimental results showed that in the range of the present study, HCCI operational range, brake thermal efficiency and exhaust emissions during HCCI operation were little affected by the RON of the test fuels. In contrast, during SI operation, thermal efficiency was deteriorated with lower RON fuel because of knocking.
Technical Paper

Potential of Naphtha-like Fuel on an Existing Modern Compression Ignition Engine

2015-09-01
2015-01-1813
Recent work has demonstrated the potential of gasoline-like fuels to reduce NOX and particulates emissions when used in diesel engines. Indeed, fuels highly resistant to auto-ignition provide more time for fuel and air mixing prior to the combustion and therefore a more homogeneous combustion. Nevertheless, major issues still need to be addressed, particularly regarding UHC and CO emissions at low load and particulate/noise combustion trade-off at high load. The purpose of this study is to investigate how an existing modern diesel engine could be operated with low-cetane fuels and define the most appropriate Cetane Number (CN) to reduce engine-out emissions. With this regard, a selection of naphtha and gasoline blends, ranging from CN30/RON 57 to CN35/RON 41 was investigated on a Euro 5, 1.6L four-cylinder engine. Results were compared to the conventional diesel running mode using a minimum NOX level oriented calibration, both in steady state and transient conditions.
Technical Paper

PRF and Toluene/n-heptane Mixture Comparison in HCCI Mode Ignition Using Transient Species Measurements and Simplified Model Analysis, Supported by 0-D and 3-D Simulations

2015-09-01
2015-01-1787
Exhaust gas analysis has been conducted for a test engine operated in HCCI mode at hot ignition suppressed condition, to detect intermediate species formed in low temperature oxidation (LTO). PRF (isooctane/ n-heptane) and NTF (toluene/ n-heptane) were used as fuel mixtures. The LTO fuel consumption decreases with increasing iso-octane content in PRF and toluene content in NTF, but only NTF showed a nonlinear effect. These tendencies were reproduced by O-D and 3-D simulations with detailed chemistry; however, quantitative differences were found between chemical models. The essential mechanism of high octane number fuel affecting the ignition property of n-heptane is discussed by developing a simplified model summarizing chain reaction of LTO, in which OH reproduction and fuel + OH reaction rate play important roles.
Technical Paper

Combustion Enhancement of Methane/Air Mixture by Nonthermal Plasma Processing

2015-09-01
2015-01-1786
Technology for the enhancement of compression ignition for a natural-gas homogeneous charge compression ignition (HCCI) engine was developed using nonthermal plasma. Specifically, nonthermal plasma was utilized to enhance the ignition of the methane/air premixture by irradiating it in an intake tube. The effect of the irradiation on compression ignition was investigated using a rapid compression and expansion machine; the ignition delay was found to shorten by the influence of irradiation. The dependence of the ignition delay time on the temperature at the end of compression was determined. Chemical analysis of the plasma-processed gas was performed using a gas detection tube as a simple method and ion-attachment ionization mass spectrometry (IAMS) as a novel method. A chemical kinetic simulation was also conducted to examine the temperature dependence of the ignition delay.
Technical Paper

Impact of Effective Compression Ratio on Gasoline-Diesel Dual-Fuel Combustion in a Heavy-Duty Engine Using Variable Valve Actuation

2015-09-01
2015-01-1796
Dual-fuel combustion using port-injected gasoline with a direct diesel injection has been shown to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. Reducing compression ratio, in conjunction with a higher expansion ratio using alternative valve timings, decreases compressed charge reactivity while maintain a high expansion ratio for maximum work extraction. Experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate dual-fuel combustion with port gasoline injection to supplement the direct diesel injection. The engine employs intake variable valve actuation (VVA) for early (EIVC) or late (LIVC) intake valve closing to yield reduced effective compression ratio.
Technical Paper

Injection Strategy Study of Compression Ignition Engine Fueled with Naphtha

2015-09-01
2015-01-1797
This study investigates the performance of a diesel engine fueled with naphtha under different load by varying injection parameters and exhaust gas recirculation (EGR) rate. The experiments were conducted on a 1.9-liter common rail diesel engine with a compression ratio of 17.5. Naphtha with a research octane number of 60.5 was tested. Three multi-injection strategies were designed. Each injection strategy, aided with EGR, conducts a characteristic combustion mode. Multi-injection strategies and single-injection strategy were tested and compared at one operating point under different main injection timing and EGR conditions. Results indicate that the well-designed multi-injection strategy has advantages over the single injection strategy in lowering noise, emissions and improving combustion efficiency. Among the three strategies, the strategy with 15-degree pilot timing and 2mg/cycle pilot injection could achieve both low NOx and PM emissions without sacrificing much fuel efficiency.
Technical Paper

Investigation of Control Method for Starting of Linear Internal Combustion Engine-Linear Generator Integrated System

2015-04-14
2015-01-1729
The linear internal combustion engine-linear generator integrated system (LICELGIS) is a generating unit with high power density, high efficiency and low emission for the range-extended electric vehicle. The LICELGIS starts with the linear generator, which shows the advantages of speed, efficiency and emission reduction, as well as the prerequisite to guarantee the steady operation of the system. This paper focuses on the reversing control method and the energy utilization efficiency in the starting process of the LICELGIS. Pursuant to the starting requirements of the linear internal combustion engine, the fewest driving cycle and the evaluation index are obtained. Meanwhile, the velocity tracking mode and the position tracking mode is proposed for the control of the starting force reversing. The motions of the starting process under two control method are comparatively analyzed, indicating that the former has a high efficiency, while the latter is more likely to achieve.
Technical Paper

An Analysis of Conditions Producing Two-Stage Main Combustion Heat Release in a Supercharged HCCI Engine using a Gaseous Fuel Blend

2015-09-01
2015-01-1785
In this study, a detailed analysis was made of supercharged HCCI combustion using a two-component fuel blend of dimethyl ether (DME), which has attracted interest as a potential alternative fuel, and methane. The quantity of fuel injected and boost pressure were varied to investigate the equivalence ratio and operating region conducive to optimal HCCI combustion. The results revealed that varying the boost pressure according to the engine load and applying a suitable equivalence ratio induced two-stage main combustion over a wide load range, making it possible to avoid excessively rapid combustion.
Technical Paper

Fuel Economy Improvement Potential Study with Energy Management of Heavy Duty Truck HEV for Long Haul Application

2015-09-01
2015-01-1781
A hybrid electric vehicle (HEV) system of heavy duty truck (HDT) for long haul application was studied to improve the fuel economy (FE). At first, the HEV system configuration and control functions were defined and optimized. Secondly the test vehicle was constructed and a test drive was carried out on Tomei express way, and then, 10% FE improvement compared to non-hybrid HDT was achieved. Additionally, HEV system with coasting technology, which had become attractive as a FE improvement technology for non-hybrid HDT, was considered to obtain further FE benefit. The effective usage of both “Electrical energy regeneration control” for HEV system and “Kinetic energy control” for coasting was studied with simulation. As a result, it was clarified that the effects for FE improvement depended on route profile and those combined operations advantaged for FE improvement compared to each individual operation.
Technical Paper

Heat Release Rate and Cylinder Gas Pressure Oscillation in Low and High Speed Knock

2015-09-01
2015-01-1880
One of the authors has proposed to use the decay rate of EHRR, the effective heat release rate, d2Q/dθ2 as an index for the rapid local combustion [1]. In this study, EHRR profiles and the cylinder gas pressure oscillations of the low and high speed knock are analyzed by using this index. A delayed rapid local combustion, such as an autoignition with small burned mass fraction can be detected. In the cases of the low speed knock, it has been agreed that a rapid local combustion is an autoignition. Although whether the cylinder gas oscillation is provoked by an auto ignition in a certain cycle or not is an irregular phenomenon, the auto ignition takes place in almost all of the cycles in the knocking condition. Mixture mass fraction burned by an auto ignition is large. A small auto ignition may induce a secondary auto ignition, in many cases, mass burned by the secondary auto ignition is extremely large.
Technical Paper

Effects of High-Response TiAl Turbine Wheel on Engine Performance under Transient Conditions

2015-09-01
2015-01-1881
Transient tests in a 2.0 liter in-line 4 cylinder downsizing gasoline direct injection engine were conducted under various transient conditions in order to investigate effects of lower rotational inertia of titanium aluminide alloy (TiAl) turbine wheel on engine and turbocharger performances. As a representative result, fast boost pressure build up was achieved in case of TiAl turbocharger compared to Inconel turbocharger. This result was mainly due to lower rotational inertia of TiAl turbine wheel. Engine torque build up response was also improved with TiAl turbocharger even though engine torque response gap between both turbochargers was slightly reduced due to retarded combustion phase. In addition, with advanced ignition timing, fuel consumption became less than that of Inconel turbocharger with similar engine torque response.
Technical Paper

Characterization of Internal Flow of Intersecting Hole Nozzle for Diesel Engines

2015-09-01
2015-01-1860
The intersecting hole nozzle, in which each orifice is formed by the converging of two or more child-holes, was proposed for the purpose of enhancing the internal turbulence in diesel nozzle, so as to promote the fuel atomization. In this paper, the internal flow characteristics of a cylindrical hole nozzle and two intersecting hole nozzles are studied by CFD simulation. The results show that, compared with conventional cylindrical hole nozzle, the internal flow of intersecting hole nozzles is characterized with slower rate of pressure decrease in the hole, none or very little cavitation, as well as about 20% to 30% higher discharge coefficients, especially under conditions of high injection pressure. Additionally, the setting of the blind hole as a disturbing domain in the intersecting hole nozzle results in more perturbation for internal flow, which will be beneficial for fuel atomization.
Technical Paper

The Spray Feature of Direct Injection Gasoline Engine with Super High Spatial Resolution Photography

2015-09-01
2015-01-1892
In direct injection spark ignition (DISI), spray characteristics such as the penetration, spatial dispersion, droplet size distribution and the spray wall interaction process are extremely important to control the combustion process through the mixture formation process. Furthermore, the spray basic feature including the spatial and temporal changes is the key issue to reduce the Particulate Matter (PM) & HC emissions. In this study, we reveal both of the macroscopic and microscopic structures of the spray dynamics by Super High Spatial Resolution Photography (SHSRP). Furthermore, it is found that the simulated spray structure such as the penetration and droplet size distribution using Computational Fluid Dynamics (CFD) code is well consistent with the experimental results.
Technical Paper

Modelling Ignition Processes of Palm Oil Biodiesel and Diesel Fuels Using a Two Stage Lagrangian Approach

2015-09-01
2015-01-1861
Designing advanced combustion engines requires a better understanding of the physical and chemical processes occurring during spray combustion. In this study, the ignition characteristics of conventional diesel and palm biodiesel fuels were simulated using the two-stage Lagrangian (TSL) simulation, a zero dimensional (0-D) modeling technique. For the diesel fuel surrogate, a detailed chemical kinetic model for n-heptane from LLNL (Lawrence Livermore National Laboratory), with 550 chemical species and 2450 elementary reactions was utilized. For the palm biodiesel, detailed mechanism (4800 species and 2450 elementary reactions) for the 5 basic biodiesel components; methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate was used. Also, simulations were performed using a reduced mechanism (115 species and 460 reactions) for surrogates of palm oil biodiesel comprising mixtures of methyl decanoate, methyl decenoate and n-heptane.
X