Refine Your Search

Search Results

Technical Paper

The GLACIER Icing Facility-Lessons Learnt in Five Years of Operation

2015-06-15
2015-01-2144
The Global Aerospace Centre for Icing and Environmental Research Inc. (GLACIER) facility is located in Thompson, Manitoba, Canada. This facility provides icing certification tests for large gas turbine engines, as well as performance, endurance and other gas turbine engine qualification testing. This globally unique outdoor engine test and certification facility was officially opened back in 2010. The prime purpose of this facility is for icing certification of aero gas turbines. As a generic engine test facility, it includes the infrastructure and test systems necessary for the installation of both current and future gas turbine engines. The GLACIER facility completed its commissioning in the winter of 2010/2011, and has now experienced five years of full icing seasons. Rolls-Royce and Pratt and Whitney have both successfully performed certification and engineering icing testing with 5 engines completing their icing certification.
Technical Paper

Simulation of Ice Particle Melting in the NRCC RATFac Mixed-Phase Icing Tunnel

2015-06-15
2015-01-2107
Ice crystals ingested by a jet engine at high altitude can partially melt and then accrete within the compressor, potentially causing performance loss, damage and/or flameout. Several studies of this ice crystal icing (ICI) phenomenon conducted in the RATFac (Research Altitude Test Facility) altitude chamber at the National Research Council of Canada (NRCC) have shown that liquid water is required for accretion. CFD-based tools for ICI must therefore be capable of predicting particle melting due to heat transfer from the air warmed by compression and possibly also due to impact with warm surfaces. This paper describes CFD simulations of particle melting and evaporation in the RATFac icing tunnel for the former mechanism, conducted using a Lagrangian particle tracking model combined with a stochastic random walk approach to simulate turbulent dispersion. Inter-phase coupling of heat and mass transfer is achieved with the particle source-in-cell method.
Technical Paper

Primary Ice Detection Certification Under the New FAA and EASA Regulations

2015-06-15
2015-01-2105
Aircraft icing has been a focus of the aviation industry for many years. While regulations existed for the certification of aircraft and engine ice protection systems (IPS), no FAA or EASA regulations pertaining to certification of ice detection systems existed for much of this time. Interim policy on ice detection systems has been issued through the form of AC 20-73A as well as FAA Issue Papers and EASA Certification Review Items to deal mainly with Primary Ice Detection Systems. A few years ago, the FAA released an update to 14 CFR 25.1419 through Amendment 25-129 which provided the framework for the usage of ice detection systems on aircraft. As a result of the ATR-72 crash in Roselawn, Indiana due to Supercooled Large Droplets (SLD) along with the Air France Flight 447 accident and numerous engine flame-outs due to ice crystals, both the FAA and EASA have developed new regulations to address these concerns.
Technical Paper

Certification Flight Tests in Natural Icing of the PZL Mielec M28 Commuter Turboprop Airplane

2015-06-15
2015-01-2110
In 2014 PZL Mielec obtained an EASA Type Certificate extension for the PZL M28 05 airplane for flight into icing conditions and this has been validated by the FAA. Thus, a project that lasted four years was finished successfully. During this period, activities consisted of icing analyses, wind tunnel tests in the NASA Glenn Research Center Icing Research Tunnel, and natural icing flight tests, artificial icing flight tests, flight tests with simulated ice shapes, and calibration tests. Flights in measured natural icing conditions began during the spring of 2009 and certification flight tests were performed in 2012. The natural icing test flights, apart one flight in the USA, were performed in Poland in the Mielec area. The final test campaign can be divided into two phases: (1) March -April flight tests campaign; and (2) November - December flight test campaign, the latter after introducing some design changes in airframe ice protection system.
Technical Paper

3D Computational Methodology for Bleed Air Ice Protection System Parametric Analysis

2015-06-15
2015-01-2109
A 3D computer model named AIPAC (Aircraft Ice Protection Analysis Code) suitable for thermal ice protection system parametric studies has been developed. It was derived from HASPAC, which is a 2D anti-icing model developed at Wichita State University in 2010. AIPAC is based on the finite volumes method and, similarly to HASPAC, combines a commercial Navier-Stokes flow solver with a Messinger model based thermodynamic analysis that applies internal and external flow heat transfer coefficients, pressure distribution, wall shear stress and water catch to compute wing leading edge skin temperatures, thin water flow distribution, and the location, extent and rate of icing. In addition, AIPAC was built using a transient formulation for the airfoil wall and with the capability of extruding a 3D surface grid into a volumetric grid so that a layer of ice can be added to the computational domain.
Technical Paper

Ice Adhesion Performance of Superhydrophobic Coatings in Aerospace Icing Conditions

2015-06-15
2015-01-2120
Researchers have recently focused on superhydrophobic coatings as an ice-mitigation tool. These surfaces have a high degree of water-repellency and were shown in previous low-speed droplet studies to reduce surface ice adhesion strength. However, there is little research regarding testing in aerospace icing conditions, i.e. high-speed super-cooled droplet impact (> 50 m/s) on a freezing substrate and air temperature. A detailed set of experiments were conducted in an icing wind tunnel to measure the ice adhesion strength of various superhydrophobic coatings by subjecting the surfaces to a super-cooled icing cloud consisting of 20 μm droplets and at a constant LWC of 0.4 g/m3. Test conditions include air speeds of 50 m/s and 70 m/s and in glaze (−5°C) and rime ice regimes (−15°C). The accreted ice was then removed by pressurized nitrogen in a mode 1 (tensile) adhesion test.
Technical Paper

Detached Eddy Simulation on a Swept Hybrid Model in the IRT

2015-06-15
2015-01-2122
In recent years, there has been a growing desire to incorporate computational methods into aircraft icing certification practices. To improve understanding of ice shapes, a new experimental program in the NASA Icing Research Tunnel (IRT) will investigate swept hybrid models which are very large relative to the test section and are intended to operate at high lift coefficients. The present computations were conducted to help plan the experiments and to ascertain any effects of flow separation and unsteady forces. As they can be useful in robustly and accurately predicting large separation regions and capturing flow unsteadiness, a Detached Eddy Simulation (DES) approach has been adopted for simulating the flow over these large high-lift wing sections. The DES methodology was first validated using experimental data from an unswept NACA 0012 airfoil with leading-edge ice accretion, showing reasonable performance.
Technical Paper

Numerical Simulation of Helicopter Blade Ice Shedding using a Bilinear Cohesive Zone Model

2015-06-15
2015-01-2121
In helicopter, the icing rotor blades will decrease the effectiveness of the helicopter and endanger the lives of the pilots. The asymmetrical ice break-up and shedding could also lead to severe vibrations of the rotor blade. Ice break-up from the main rotor may strike the fuselage and tail rotor, even worse, find its way into the engine, which may cause serious aircraft accidents. An understanding of the mechanisms responsible for ice shedding process is necessary in order to optimize the helicopter rotor blade design and de-icing system to avoid hazardous ice shedding. In this paper, the ice shedding model is improved by introducing a bilinear cohesive zone model (CZM) to simulate the initiation and propagation of ice/blade interface crack. A maximum stress criterion is used to describe the failure occurred in the ice.
Technical Paper

Use of a Portable Flanged Impedance Tube for Absorber Design and Measurement

2015-06-15
2015-01-2201
Acoustic material testing is becoming increasingly relevant to engineers, designers and manufacturers from a broad range of industries. This paper presents comparisons between material absorption measurements made using the traditional approaches of the reverberation room method and the fixed impedance tube using a sample holder, with those obtained using a lightweight portable flanged impedance tube method. The portable tube allows fast non-destructive in-situ material measurements. It may therefore be used to measure the impact of the installed lay-up (e.g. effects of facing sheets, curvature, material compression, bagging, etc.). Results are presented for both non-locally reacting and locally reacting materials. The flanged tube results are compared directly with in-tube data. They are also corrected for random incidence to allow comparison with the diffuse field reverberation room data.
Technical Paper

Study on the Influence of Material Parameters to Acoustic Performance

2015-06-15
2015-01-2200
Acoustic performance of auto interiors is definitely important to control the NVH (noise, vibration, and harshness) performance inside a vehicle, and it is determined by the material parameters, such as density (ρ), thickness (d), open porosity (OP), airflow resistivity (σ), tortuosity (T), viscous characteristic length (VCL), thermal characteristic length (TCL), young's modulus, poisson's ratio, and damping coefficient. Firstly, by making different felt samples (of different surface density and thickness), the sound absorption performance and related parameters were obtained. Then the correlation between the parameters and the sound absorption coefficient (SAC) was summarized. Through this method, database of acoustic parameters and the corresponding SAC for porous materials can be established and sound package design and adjustment can be easily conducted based on the database.
Technical Paper

Advancements in Liquid Damping Materials

2015-06-15
2015-01-2202
Over the past decade damping materials have contributed major improvements to passenger comfort. Noise Vibration and Harshness (NVH) engineers have further shaped material specifications to reflect key targeted properties that improve vehicle design. The specified damping material is then applied to the formed surfaces of the vehicle body to provide optimal performance and achieve the required results. This paper describes how liquid dampers have advanced to meet increased performance requirements through improved loss modulus of the final coating. Data generated by dynamic mechanical analysis shows that this viscoelastic behavior is what drives the performance in damping materials. Through the correlation of loss moduli to damping performance of Oberst bars, the mechanism can be further quantified and explained.
Technical Paper

Vibration Mitigation of Structural Suspension Using Active Mount

2015-06-15
2015-01-2212
Active vibration control is the most effective method used for suppressing vibrations from external sources. This paper presents the particle swarm optimization (PSO) algorithm to search about the optimum feedback controller gains for the active mount suspension, for the first time, to reduce the vibrations level of a structural system. It consists of vibrating mass and flexible beam subjected to an external disturbance. A mathematical model and the equations of motion of the structure system with an active mount suspension are simulated using Matlab/Simulink software. The active controller was designed to control the first three modes of the structure. The proposed PSO algorithm aims to minimize the acceleration of the suspended mass as the objective function with constraint of the actuator force. Vibrations level is examined theoretically in order to assess the effectiveness of the proposed controller.
Technical Paper

Random Averaging

2015-06-15
2015-01-2213
Random vibration control systems produce a PSD plot by averaging FFTs. Modern controllers can set the Degrees of Freedom (DOF), which is a measure of the amount of averaging to use to estimate the PSD. The PSD is a way to present a random signal-which by nature “bounces” about the mean, at times making high excursions from the mean-in a format that makes it easy to determine the validity of a test. This process takes time as many frames of data are collected in order to generate the PSD estimate, and a test can appear to be out of tolerance until the controller has enough data to estimate the PSD with a sufficient level of confidence. Something is awry with a PSD estimate that achieves total in-tolerance immediately after starting or during level changes, and this can create dangerous over or under test conditions within specific frequency bands and should be avoided.
Technical Paper

Hybrid FEA-SEA Modeling Approach for Vehicle Transfer Function

2015-06-15
2015-01-2236
Finite element analysis (FEA) is commonly used in the automotive industry to predict low frequency NVH behavior (<150 Hz) of structures. Also, statistical energy analysis (SEA) framework is used to predict high frequency (>400 Hz) noise transmission from the source space to the receiver space. A comprehensive approach addressing the entire spectrum (>20 Hz) by taking into account structure-borne and air-borne paths is not commonplace. In the works leading up to this paper a hybrid methodology was employed to predict structure-borne and air-borne transfer functions up to 1000 Hz by combining FEA and SEA. The dash panel was represented by FE structural subsystems and the noise control treatments (NCTs) and the pass-throughs were characterized via testing to limit uncertainty in modeling. The rest of the structure and the fluid spaces were characterized as SEA subsystems.
Technical Paper

A New Narrowband Active Noise Control System in the Presence of Frequency Mismatch and its Application for Steady-State Blower Noise

2015-06-15
2015-01-2214
In order to reduce high-frequency harmonic noise produced by the blower in the auxiliary system of a fuel cell vehicle (FCV), a narrowband active noise control (ANC) method instead of conventional passive mufflers is adopted since the blower demands clean air condition and expects good acoustic performance. However, in ANC practical applications, the frequency difference between reference signal and actual primary signal, i.e., frequency mismatch (FM), can significantly degrade the high-frequency performance of narrowband ANC system. In this paper, a new narrowband ANC system is proposed to compensate for the performance degeneration due to the existence of FM and improve noise reduction at high frequencies. The proposed system consists of two parts: the Filtered Error Least Mean Square (FELMS) algorithm filtering the primary signals at wide frequency range other than those at the targeted frequencies, and the FM removal algorithm proposed by Yegui Xiao.
Technical Paper

Runback Water Behavior on Hydro-phobic/philic Surfaces of Circular Cylinder Placed in Flow Field

2015-06-15
2015-01-2158
Coating has been recently considered as having good potential for use in preventing in-cloud icing on the leading edge of the lifting surfaces of an aircraft in cold climates. In terms of wettability, a coat may exhibit hydrophobicity or hydrophilicity depending on its specific properties. The same applies to the ice adhesion strength, which may be either high or low. It is thus necessary to determine which type of anti-icing or de-icing coat would be appropriate for a particular application in order to fully utilize its specific properties. Notwithstanding, a coat is incapable of preventing ice accretion by itself, and a perfect icephobic coat is yet to be developed. Coating is also sometimes applied to the surfaces of electrical heaters and load-applying machines to enable them to function more effectively and use less energy. The coating used for an electric heater, for instance, should be hydrophobic because of the need for rapid removal of molten water from the surface.
Technical Paper

Effects of Prolonged Exposure to UV and Water on Super-Hydrophobic Surfaces at Ambient and Icing Conditions

2015-06-15
2015-01-2160
The surfaces that shed drops helps with mitigation of icing. Shedding of drop depends on surface hydrophobicity, which becomes affected when exposed to water and/or UV. The hydrophobicity degradation of six (Spray SHS, Etched Al SHS, Hydrobead, Neverwet, Waterbeader, and WX2100) different super-hydrophobic surfaces (SHS), exposed to water or UV, were studied from the drop shedding perspective. Two methods were adopted for the hydrophobicity analysis. Among them, one is to study the contact angles (CA) and contact angle hysteresis (CAH) change at static state (i.e., no airflow) compared to the untreated surface. The other one is to analyze the change in critical air velocity (Uc) for a given drop exposed to airflow, on water/UV treated surfaces at room temperature (22 °C) and icing conditions (−1 and −7 °C).
Technical Paper

Multi-time Step Icing Calculations Using a 3D Multi-block Structured Mesh Generation Procedure

2015-06-15
2015-01-2161
The paper presents the framework of fully automated two/three dimensional ice accretion simulation package, with emphasis on the remeshing step. The NSMB3D-ICE Navier-Stokes code, coupled to an Eulerian droplet module and iterative Messinger thermodynamic model, can perform multi time-steps ice accretion simulations via an automated multi-block elliptic/parabolic grid generation code (NSGRID3D). Attention is paid to the efficiency and robustness of the numerical calculations especially for complex 3D glaze ice simulation. The new automated multi time-step icing code NSMB3D-ICE/NSGRID3D is used to compute several icing studies on the GLC305 wing for rime and glaze ice cases.
Technical Paper

Energy Efficient De-Icing by Superhydrophobic and Icephobic Polyurethane Films Created by Microstructuringand Plasma-Coating

2015-06-15
2015-01-2159
As known de-icing methods use a high amount of energy or environmentally harmful chemicals, research has focused lately on passive de-icing by functional surfaces with an improved removal of ice (de-icing) or a reduced formation of it (anti-icing). Inspired by the Lotus plant leaf, a “superhydrophobic” surface can be produced by the combination of a hierarchical micro/nanoscale roughness and a hydrophobic surface coating. By a hot stamping process we have generated differently shaped microstructures (cylinders, ellipses) on polyurethane (PU) films which were afterwards coated by a plasma enhanced chemical vapor deposition (PECVD) process with thin, hydrophobic fluorocarbon films. This combination of methods could be a process for the production of large area functionalized films. PU films are suitable for outdoor use, because they are resistant against erosion and UV radiation. The films can be glued to different geometries and can easily be exchanged if damaged.
Technical Paper

Dual Degree of Freedom Vibration Damper (DDVD) for Driveline Noise and Vibration Issue Resolution

2015-06-15
2015-01-2177
Powertrain and driveline systems interaction in rear wheel drive vehicle development has recently gained attention for the improvement of interior noise and vibration in emerging markets. The driveline is a significant path for engine-generated noise and vibration to reach the interior occupant interfaces, where it affects refinement perception. The interaction of powertrain excitation orders and driveline resonant responders covers a wide range of frequency and vehicle operating conditions. This interaction poses significant challenges during vehicle development. With recent increased demand for higher specific power from diesel engines, driveline refinement has become even more challenging, especially for rear wheel drive vehicles. Two driveline related refinement issues were observed during evaluation of a RWD vehicle. Root cause analysis determined that the first issue (lower rpm boom noise and vibration) was due to engine torsional excitation of the driveline.
X