Refine Your Search

Search Results

Journal Article

Design and Development of Electro Hydraulics Hitch Control for Agricultural Tractor

2017-01-10
2017-26-0227
Tractor hitch control system is used for attaching and operating various Agricultural Implements and for operating tipping trailer. The system has also got provision to attach additional Aux valves for rear and front mounted attachments. The rear mounted implements are coupled to the tractor using Three Point Linkage (3PL) System. The hitch hydraulics system consists of hydraulic pump, filter, piping’s, fittings and hydraulics lift unit. Hydraulics lift unit consists of a proportional control valve, cylinder, piston and power linkages. Conventional control valve is hydro mechanical part operated by mechanical linkages. The control valve and linkages plays major role in performance of hydraulics system. Hydraulics is required to operate in extreme conditions of soils such as very soft like sand to very hard like black cotton sand.
Journal Article

Field Failure Resolution of a Tractor Engine Exhaust System Using Constrained Single Objective Optimization and Stochastic Analysis

2017-01-10
2017-26-0233
The tractor engine related mounting brackets are very critical due to different aspects of vehicle performance, durability and noise. These mounting bracket have been designed as a framework to support engine external parts like muffler, exhaust tail pipe, alternator etc. Vibration and fatigue has been continuously a concern which may lead to structural failure and performance issues. Various such failures are faced regularly by automotive industry and finite element based analysis are used to resolve them. The resolution is done by playing with the component thicknesses, material, by providing additional support etc. However, due to large degree of uncertainty associated with the loading, boundary conditions, manufacturing, environmental effects; still there is some probability of failure. This paper focuses on a field failure issue of an exhaust system of a tractor and subsequent concern resolution.
Journal Article

Multiscale Modeling Approach for Short Fiber Reinforced Plastic Couplings

2017-01-10
2017-26-0243
The demand for injection molded reinforced plastic products used in the automotive industry is growing due to the capability of the material for volume production, high strength to weight ratio, and its flexibility of geometry design. On the other hand, the application of fiber filled plastic composites has been challenging and subject of research during past decades due to the inability to accurately predict the mechanical strength and stiffness behavior owing to its anisotropic characteristics. This paper discusses a numerical simulation based technique using multiscale (2 scale Micro-Macro) modeling approach for short fiber reinforced plastic composites. Fiber orientation tensors and knit lines are predicted in microscale analysis using Autodesk Inc.’s Moldflow® software, and structural analysis is performed considering the homogenized structure in macroscale analysis using ANSYS® software tool.
Journal Article

On the Use of Driver-in-the-Loop (DIL) Systems in Commercial Vehicle Chassis Development

2017-01-10
2017-26-0242
A vehicle simulation model is developed, validated and integrated into a closed-loop virtual driving environment using a state-of-the-art hexapod driving simulator. Thirty variant states are implemented and evaluated subjectively on steering and handling performance quality and quantity. Standard open-loop objective testing manoeuvres are simulated and performance metrics are calculated, allowing for a systematic cross-correlation process. Graphical analysis of the correlation metrics proves that chassis changes may accurately be felt through the simulator interface. It is proposed how obtained correlation models may serve for driver-feel optimizing target setting in early vehicle development stages, frontloading a great deal of costly prototype testing. System requirements are established and benefits and limitations are portrayed.
Journal Article

A Multidimensional Scaling Analysis of Surface Perceptual Parameters on Scratch and Mar Visibility Resistance in Polymers

2017-04-11
2017-01-9451
Brightness, transparency, and color impact critically the aesthetics of polymeric surfaces. They can significantly change the perception of common damages such as scratch and mar. Particularly, subtle mar damage is more dependent on surface perceptual properties. In this study, we investigate the impact of these attributes on scratch and mar visibility resistance of commercialized polymeric model systems frequently used in automotive industry. Twenty subjects were involved in a psychophysical test based on pairwise comparison, and results were treated using multidimensional scaling (MDS) analysis. A tied ordinal weighted Euclidian MDS model was used to visualize the relational structures of mar perception space. Results show that scratch visibility resistance tends to decrease with dark, more transparent, and green surfaces. Mar perception was reasonably conceptualized by a two-dimensional MDS space.
Journal Article

The Influence of Fuel Cetane Number on Catalyst Light-Off Operation in a Modern Diesel Engine

2017-08-18
2017-01-9378
The design of modern diesel-powered vehicles involves optimization and balancing of trade-offs for fuel efficiency, emissions, and noise. To meet increasingly stringent emission regulations, diesel powertrains employ aftertreatment devices to control nitrogen oxides, hydrocarbons, carbon monoxide, and particulate matter emissions and use active exhaust warm-up strategies to ensure those devices are active as quickly as possible. A typical strategy for exhaust warm-up is to operate with retarded combustion phasing, limited by combustion stability and HC emissions. The amount of exhaust enthalpy available for catalyst light-off is limited by the extent to which combustion phasing can be retarded. Diesel cetane number (CN), a measure of fuel ignition quality, has an influence on combustion stability at retarded combustion phasing. Diesel fuel in the United States tends to have a lower CN (both minimum required and average in market) than other countries.
Journal Article

-Design and Control of Switching Synchronous Motor Dedicated to Electric Cars - Motorization

2017-04-11
2017-01-9625
In this paper, we present a design and control methodology of an innovated structure of switching synchronous motor. This control strategy is based on the pulse width modulation technique imposing currents sum of a continuous value and a value having a shape varying in phase opposition with respect to the variation of the inductances. This control technology can greatly reduce vibration of the entire system due to the strong fluctuation of the torque developed by the engine, generally characterizing switching synchronous motors. A systemic design and modelling program is developed. This program is validated following the implementation and the simulation of the control model in the simulation environment Matlab-Simulink. Simulation results are with good scientific level and encourage subsequently the industrialization of the global system.
Journal Article

Re-Design for Automotive Window Seal Considering High Speed Fluid-Structure Interaction

2017-04-11
2017-01-9452
Automotive window seal has great influence on NVH (Noise-Vibration-Harshness) performance. The aerodynamic effect on ride comfort has attracted increasing research interest recently. A new method for quantifying and transferring aerodynamics-induced load on window seal re-design is proposed. Firstly, by SST (Shear Stress Transport) turbulence model, external turbulent flow field of full scale automotive is established by solving three-dimensional, steady and uncompressible Navier-Stokes equation. With re-exploited mapping algorithm, the aerodynamics pressure on overall auto-body is retrieved and transferred to local glass area to be external loads for seals, thus taking into account the aerodynamics effect of high speed fluid-structure interaction. This method is successfully applied on automotive front window seal design. The re-design header seal decreases the maximum displacements of leeward and windward glass with 9.3% and 34.21%, respectively.
Journal Article

3D Auditory Displays for Parking Assistance Systems

2017-04-11
2017-01-9627
The objective of this study was to investigate if 3D auditory displays could be used to enhance parking assistance systems (PAS). Objective measurements and estimations of workload were used to assess the benefits of different 3D auditory displays. In today’s cars, PAS normally use a visual display together with simple sound signals to inform drivers of obstacles in close proximity. These systems rely heavily on the visual display, as the sound does not provide information about obstacles' location. This may cause the driver to lose focus on the surroundings and reduce situational awareness. Two user studies (during summer and winter) were conducted to compare three different systems. The baseline system corresponded to a system normally found in today’s cars. The other systems were designed with a 3D auditory display, conveying information of where obstacles were located through sound. A visual display was also available. Both normal parking and parallel parking was conducted.
Journal Article

Adaptive Network Trained Controller for Automotive Steering Systems

2017-04-11
2017-01-9626
Electrical Power Assist Steering (EPAS) systems are currently eliminating the traditional hydraulic steering systems in vehicles. EPAS systems are nonlinear Multi Input Multi Output (MIMO) systems with multiple objectives, including fast response to the driver torque command, good driver feel, and attenuation of load disturbance and sensor noises. Optimal control method is employed to design EPAS system controllers for improved performance and robustness. But these controllers have showed acceptable performance for certain operating conditions and undesired steering feel for high steering gain. In this work, the neural networks are used which replace the optimal controllers of EPAS systems. A Euclidean adaptive resonance theory (EART) networks is trained according to the data collected from an H∞ optimal controller. The collected data represent the controller input and output signals. The said data are normalized and clustered into categories in the EART modules.
Journal Article

A Feasibility Study on Driver Model Based Lap Time Simulation Using Genetic Algorithms

2017-05-18
2017-01-9679
Lap time simulation has always been a topic of interest in the automotive industry as it summarizes the whole dynamic performance of an automobile in a single value. During the development of road and race cars, to avoid expensive testing and to prove different design solutions, it is useful to simulate the maximum performance of the vehicles. The cars are driven to their limits to exploit their capabilities, where their dynamic behaviour can be highly non-linear. The vehicle models need to replicate these characteristics as precisely as possible. Due to this, the problem of achieving the minimum lap time with a certain car around a race track is a challenging problem to solve. A method to evaluate the minimum lap time is presented, approaching the optimal solution by coupling a driver model, a simulation environment and genetic algorithms to perform the optimization. The algorithm also offers the possibility to add vehicle parameters to be optimized regarding the lap time.
Journal Article

Toothed Chain CVT: Opportunities and Challenges

2017-03-14
2017-01-9677
A toothed chain continuously variable transmission concept is studied. By designing positive engagement at top overdrive ratio, we explored the potential to improve CVT mechanical efficiency. The low cost solution could improve fuel economy by 0.7% in FTP composite cycle. Preliminary multi-body dynamic simulation is also completed using VL-Motion to concept-proof the technical feasibility of disengagement and engagement. To address the noise issue resulted from abandoning the random pitch design in production chain, we proposed an alternate chain pitch sequence but more experimental data is required to validate the design.
Journal Article

Best Practices in Establishing Business Case for Implementing Blockchain Solution in Aerospace

2022-03-08
2022-01-0002
The aircraft asset life cycle processes are rapidly being digitalized. Many novel technologies enabled processes of recording these electronic transactions are being emerged. One such technology for recording electronic transactions securely is Blockchain, defined as distributed ledger technologies which includes enterprise blockchain. Blockchain is not widely used in the aerospace industry due to lack of technical understanding and questions about its benefits. Assessment and establishment of business case for implementing blockchain based solution is needed. The aerospace industry is very conservative when it comes to technology adoption and hence it is difficult to change legacy processes. Additionally, the industry is very fragmented. The technology is advancing at a faster rate and applies across geographies under various regulatory oversight which makes blockchain based solution implementation challenging.
Journal Article

It Takes a Village: A Case Study of Business Development and Innovation in a UAS/AUS Ecosystem to Address Critical Industry Challenges

2021-06-16
2021-01-1002
Entrepreneurial innovation that spurs economic development requires a collaborative cluster of cooperative effort, across a diverse ecosystem of partners. Literature provides resounding evidence to support the notion that an innovative, entrepreneurial ecosystem is critical to both successful economic development and industry sector growth. The UAS/AUS industry sector is a fast-growing sector across the United States, with regional leadership demonstrated in North Dakota, California, North Carolina, New York, Oklahoma, Texas and New Mexico. This case study is focused on investigating how the North Dakota autonomous systems ecosystem continues to evolves and develop mechanisms and partnerships to address industry pain points, facilitate cutting edge research, ensure high-quality UAS/AUS testing, and support an adaptive business development pipeline across the entrepreneurial life cycle.
Journal Article

Development and Application of J3112: A/C Compressor Oil Separator Effectiveness Test Standard

2022-03-29
2022-01-0193
SAE Standard J3112 – “A/C Compressor Oil Separator Effectiveness Test Standard” - has been developed to provide an analytical means of determining if an a/c compressor with oil separator functionality meets the U.S. EPA criteria of a minimum 50% effectiveness in order to qualify for menu credits for greenhouse gas reduction, as specified in the U.S Government Code of Federal Regulations (CFR) Title 40, §86.1868-12. At the start of the EPA’s a/c efficiency credit program in 2017 OEMs could qualify for greenhouse gas menu credits without providing data on the effectiveness of the product being implemented, but EPA regulations required supporting data from 2020 MY through the end of the current published regulations in 2026 MY. J3112 was developed by the SAE Interior Climate Control MVAC Supplier Committee (TEVBES2E) in order to provide a standardized procedure for determining oil separator effectiveness in order to comply with the EPA requirements for 2020-2026 model years.
Journal Article

Design of a Human-Centric Auto-Climate Control System for Electric Vehicles

2022-03-29
2022-01-0194
As the global automotive industry makes a critical transition from the traditional ICEVs (Internal Combustion Engine Vehicles) to EVs (Electric Vehicles), it faces two conflicting technological challenges: 1) range degradation in cold weather conditions and 2) reducing time to thermal comfort in winter driving in absence of waste heat from the IC engine. Next to the EV drivetrain, the HVAC (Heating Ventilation and Air Conditioning) system is the highest consumer of electric power in the vehicle. To get the occupants to a thermally comfortable state as quickly and efficiently as possible, automotive OEMs (Original Equipment Manufacturers) are exploring microclimate systems that involve localized heating and cooling.
Journal Article

Real-time Detection and Avoidance of Obstacles in the Path of Autonomous Vehicles Using Monocular RGB Camera

2022-03-29
2022-01-0074
In this paper, we present an end-to-end real-time detection and collision avoidance framework in an autonomous vehicle using a monocular RGB camera. The proposed system is able to run on embedded hardware in the vehicle to perform real-time detection of small objects. RetinaNet architecture with ResNet50 backbone is used to develop the object detection model using RGB images. A quantized version of the object detection inference model is implemented in the vehicle using NVIDIA Jetson AGX Xavier. A geometric method is used to estimate the distance to the detected object which is forwarded to a MicroAutoBox device that implements the control system of the vehicle and is responsible for maneuvering around the detected objects. The pipeline is implemented on a passenger vehicle and demonstrated in challenging conditions using different obstacles on a predefined set of waypoints.
Journal Article

A Humanized Vehicle Speed Control to Improve the Acceptance of Automated Longitudinal Control

2022-03-29
2022-01-0095
Vehicle speed controls, as adaptive cruise control and related automated evolutions, are control systems able to follow a desired vehicle reference speed that is set by the driver and fused with information as road signs, SD maps etc.. Current normal production systems don’t distinguish among the vehicle users, only some carmakers are doing first steps towards the introduction of learning from driver to adapt the traditional control. In our work, we follow up this content with a humanized speed control, based on learning of driver longitudinal behavior. This method is able to combine machine learning algorithms, vehicle positioning and recurrent trips into existing automated longitudinal control systems. Proposed algorithm can reduce the interactions between drivers and automated systems by improving the acceptance of automated longitudinal control. Furthermore, proposed integration works mainly on speed reference that dramatically simplifies the customization of the system.
Journal Article

Generation of 3D-Digital Indian Public Road Profile Database and Its Application for Vehicle Development through Road-Vehicle Interaction Study

2017-01-10
2017-26-0275
Design of vehicle for targeted customer usage is one of the key steps during vehicle development process. Due to globalization, most of vehicles, aggregates, components are being designed for global market considering worldwide load spectrum. Generally for doing this the vehicle response is being measured for different markets but this process is very time consuming. Also for getting these vehicle dependent parameters, exercises need to be repeated on each type/class of vehicle. So there is a need to have a robust procedure, tools which will helps OEM’s to predict the loads, vehicle response for different market segments at an early stage of vehicle development program using the inputs which are vehicle independent. The solution for this could be to use vehicle independent input such as digitized road profiles (2D or 3D) of target customer markets in combination with proper MBD simulation tools.
Journal Article

Analysis of Exhaust System Mounting Scheme

2017-01-10
2017-26-0291
This paper presents a stepwise approach for exhaust system mount scheme finalization from concept to detail design phase. Finalization of exhaust hanger locations by finding Nodal points on exhaust system were considered. Various generic aspects like frequency separation, mode shapes, reaction forces, static displacement, and stress were considered. Apart from the generic aspects special aspects like peak loads and operating conditions were also considered. A combination of design of experiments (DoE) and optimization was used to finalize the mounting scheme and mounting characteristic parameters.
X