Refine Your Search

Search Results

Technical Paper

“Derivation of Conduction Heat Transfer in Thin Shell Toroids”

2000-07-10
2000-01-2487
This paper presents the derivation of the equations for circumferential, longitudinal and radial heat transfer conductance for a thin shell toroid or a segment of the toroid. A thin shell toroid is one in which the radius to thickness ratio is greater than 10. The equations for the surface area of a toroid or of a toroidal segment will also be derived along with the equation to determine the location of the centroid. The surface area is needed to determine the radial conductance in the toroid or toroidal segment and the centroid is needed to determine the heat transfer center of the toroid or toroidal segment for circumferential and longitudinal conductance. These equations can be used to obtain more accurate results for conductive heat transfer in toroid which is a curved spacecraft components. A comparison will be made (1) using the equations derived in this paper which takes into account the curvature of the toroid (true geometry) and (2) using flat plates to simulate the toroid.
Technical Paper

“Digital Prototype” Simulations to Achieve Vehicle Level NVH Targets in the Presence of Uncertainties

2001-04-30
2001-01-1529
“Digital Prototype” simulations have been used at DaimlerChrysler to achieve vehicle level NVH objectives. The effectiveness of these simulations to guide the design when faced with vehicle parameter uncertainties is discussed. These uncertainties include, but are not limited to, material properties, material gauges, damping, structural geometry, loads, boundary conditions and weld integrity. Manufacturing and assembly processes introduce variations in the nominal values of these parameters resulting in a scatter of vehicle level NVH simulation responses. An example of a high frequency NVH concern will be studied and modified to arrive at robust design guidance when faced with uncertainty. The validity of a “deterministic digital prototype” simulation model and its relevant role as a “trend predictor” rather than “absolute predictor” tool in guiding the design is also discussed.
Technical Paper

“Doing More with Less” - The Fuel Economy Benefits of Cooled EGR on a Direct Injected Spark Ignited Boosted Engine

2010-04-12
2010-01-0589
Due to the rising costs of fuel and increasingly stringent regulations, auto makers are in need of technology to enable more fuel-efficient powertrain technologies to be introduced to the marketplace. Such powertrains must not sacrifice performance, safety or driver comfort. Today's engine and powertrain manufacturers must, therefore, do more with less by achieving acceptable vehicle performance while reducing fuel consumption. One effective method to achieve this is the extreme downsizing of current direct injection spark ignited (DISI) engines through the use of high levels of boosting and cooled exhaust gas recirculation (EGR). Key challenges to highly downsized gasoline engines are retarded combustion to prevent engine knocking and the necessity to operate at air/fuel ratios that are significantly richer than the stoichiometric ratio.
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

“EVO: New Metallic Substrate Development for Commercial Vehicle and Non-Road Applications”

2021-09-22
2021-26-0211
Affordable, efficient and durable catalytic converters for the Commercial Vehicle and Non-Road industry in all countries are required to reduce vehicle emissions under real world driving conditions and fulfill future legal requirements. Specially for India traffic conditions and payload to engine size conditions new cost-effective solutions are needed to participate in a cleaner and healthier environment. Metallic substrates with structured foils like the Transversal StructureTM (TS) or the Longitudinal StructureTM (LS) have been proved to be capable of improving conversion behavior, even with smaller catalyst size. Now Vitesco Technologies is developed a new Substrate for Heavy duty applications that specifically maintains the geometric surface area at a very high level and improves further the mass transport of the pollutants, which potentially leads together to very high pollutant conversion rates.
Technical Paper

“Ease of Driving” Road Classification for Night-time Driving Conditions

2016-04-05
2016-01-0119
This paper is an extension of our previous work on the CHASE (Classification by Holistic Analysis of Scene Environment) algorithm, that automatically classifies the driving complexity of a road scene image during day-time conditions and assigns it an ‘Ease of Driving’ (EoD) score. At night, apart from traffic variations and road type conditions, illumination changes are a major predominant factor that affect the road visibility and the driving easiness. In order to resolve the problem of analyzing the driving complexity of roads at night, a brightness detection module is incorporated in our end-to-end nighttime EoD system, which computes the ‘brightness factor’ (bright or dark) for that given night-time road scene. The brightness factor along with a multi-level machine learning classifier is then used to classify the EoD score for a night-time road scene. Our end-to-end ‘Night-time EoD system’ is a real-time onboard system implemented and tested on road scene data collected in Japan.
Technical Paper

“Electric Aircraft” Pioneer The Focke-Wulf Fw 190

1996-10-01
965631
The Focke-Wulf Fw 190 was one of the truly outstanding fighter aircraft of the Second World War. It distinguished itself over all fronts on which the Luftwaffe fought in conditions ranging from arctic wastes to the deserts of North Africa. The Fw 190 represented the epitome of conventional piston-engine fighter design on the threshold of the jet age. Conceived nearly sixty years ago, flying for the first time on the eve of the war in 1939 and acknowledged as “the best all-around fighter in the world” in the mid-war years, derivatives of the Fw 190 were still pushing the ultimate capability boundary for this class of aircraft at war's end in 1945 (reaching maximum level true airspeeds of 470 mph [about Mach 0.7] at altitudes of well over 40,000 feet). This paper assesses the design attributes and technology approaches, including innovative use of advanced electrical systems, that were used to make the Fw 190 one of the great all-around fighters in aviation history.
Technical Paper

“Evaluation of the Drift of vehicle Inspection/Maintenance Emission Analyzers in use- A California Case Study”

1989-05-01
891119
Quality assurance (QA) in motor vehicle emissions inspection/maintenance (I/M) programs is a continuing concern, especially in decentralized programs with hundreds or even thousands of licensed stations. The emissions analyzers used in such stations are an important focus of governmental QA efforts because of the central role of analyzers in determining which vehicles need to be repaired. Therefore, the In-use performance of I/M emission analyzers has a large impact on the quality of 1/M programs as a whole. This paper reports on the results of an investigation in California designed to determine in-use performance of emission analyzers in the field. The investigation was designed to evaluate both drift rates and the ability of analyzer systems with automatic gas calibration capability to correct analyzer responses outside of accepted tolerances.
Technical Paper

“Experimental Investigation on the Properties of Briquettes Made from Ideal Municipal Waste: An Alternate Fuel”

2023-11-10
2023-28-0060
Energy demand climbs as a consequence of the inherent relationship between the rate of consumption of energy and the growth of the economy. In light of the depletion of fossil fuels, it is necessary to implement energy efficiency techniques and policies that support sustainable development. Globally, researchers show more interest in discovering fossil fuel alternatives, as a result of fuel crisis. This research elaborates on the production and experimental investigation of briquettes made from ideal municipal solid waste (MSW), such as food waste and garden waste, as a feasible choice for alternate fossil fuels. From Municipal, agricultural, and food waste, we can get biomass waste. Municipal solid and agricultural waste is extensively dispersed, but their potential for converting biomass into energy generation still needs to be explored. This study was carried out based on the information gathered from various studies published in the scientific literature.
Technical Paper

“Experimental Investigations on NOx Reduction Using Antioxidant Additives in Conjunction with SCR in a Diesel Engine Powered by Ricinus Communis Biodiesel”

2023-11-10
2023-28-0059
The current study has concentrated on discovering and developing clean alternative energy sources like biodiesel and employing novel methods to reduce harmful emissions and enhance engine performance behavior. The consumption of biodiesel in diesel engines reduces the emissions from the tailpipe, but some researchers claim that it actually produces more NOx pollution than engines that run on regular diesel, which limits the use of biodiesel. In this study, Ricinus communis biodiesel was generated through transesterification process, and its fuel properties were assessed. The employ of biodiesel in diesel engines minimize exhaust emissions; however, multiple investigators claim that the consumption of biodiesel generates greater amounts of nitrogen oxide pollutants than diesel-fueled engines, which limits the possibility of biodiesel usage.
Technical Paper

“FEV’s ‘CogniSafe’: An Innovative Deep Learning-Based AI Driver Monitoring System for the Future of Mobility”

2024-04-09
2024-01-2012
Driver state monitoring is a crucial technology for enhancing road safety and preventing human error-caused accidents in the era of autonomous vehicles. This paper presents CogniSafe, a comprehensive driver monitoring system that uses deep learning and computer vision methods to detect various types of driver distractions and fatigue. CogniSafe consists of four modules: Driver anomaly detection and classification: A novel two-phase network that proposes and recognizes driver anomalies, such as texting, drinking, and adjusting radios, using multimodal and multiview input. Gaze estimation: A video-based neural network that jointly learns head pose and gaze dynamics, achieving robust and efficient gaze estimation across different head poses. Eye state analysis: A multi-tasking CNN that encodes features from both eye and mouth regions, predicting the percentage of eye closure (PERCLOS) and the frequency of mouth opening (FOM).
X