Refine Your Search

Search Results

Technical Paper

Investigation on Measurement of Diesel Spray Breakup Length by Using Doppler Signals

2001-03-05
2001-01-0533
New measuring methods of diesel spray characteristics were investigated by using laser Doppler signals, when diesel spray was injected into a high pressure vessel at room temperature(Injection under the high pressure means the simulation of injection atmosphere of diesel engine). We describe two methods of breakup length measurement, and these have great advantage compared with the conventional method using spray photographs. First, spray tip penetration was measured by the delay time of Doppler signals from injection start to spray tip arrival at each measuring point (measuring volume of Laser Doppler Velocimeter (LDV)), traversing the measuring point along the spray axis center line or offset line of the center line from nozzle hole towards downstream. Spray breakup length was measured as the inflection point of the curve drawing the delay time of Doppler signals versus the measuring points.
Technical Paper

Investigation on Mechanical Behaviour of Glass Fiber Reinforced with Banana Slacks and Coconut Coir

2024-02-23
2023-01-5101
Natural fibers are increasingly being used to reinforce glass fiber composites rather than synthetic fibers because of their increased tensile strength, despite some inherent disadvantages. With the help of the structural analysis program ANSYS, three different combinations were thoroughly analyzed with an eye toward factors like total deformation, equivalent elastic strain, and equivalent stress in order to determine the best combination. The composite specimen exhibiting the best performance qualities was chosen for further manufacturing. A fracture load of 8.93 kN and a tensile strength of 81.46 MPa were obtained from tensile strength tests and Charpy impact tests performed on samples made from the composite. The impact test, which produced a value of 14 J using a 15 kg pendulum, also shed light on the ability to absorb energy during fracture. These results indicate that the composite material has qualities that make it a good choice for dashboards and panels for automobiles.
Technical Paper

Investigation on Mechanical Properties of ER70S-6 Copper-Coated Steel Wire Sample Produced by Wire Arc Additive Manufacturing (WAAM)

2024-02-23
2023-01-5105
Wire arc additive manufacturing technology has become a promising alternative technology to high-volume metal deposition in many manufacturing industries like aerospace and automotive due to arc stability, long process cycle time, and formability. In this work, the Fanuc arc mate robot forms a single-pass, single-layer structure with a 1.2 mm diameter wire of copper-coated steel. Pure Argon gas is used as a shielding gas to protect the weld from oxidation. Different welding speed is carried out to analyze the bead thickness and height. Current and voltage as a heat input with optimal welding speed, a 10 kg straight wall is built with an operative building rate of 3.94 kg/h. The Rockwell hardness test is used to determine the hardness of the material, and it is discovered that it is 80 HRB. The tensile test is performed to determine the tensile strength and yield strength of the component; the measured values are 483.88 N/mm2 and 342.156 N/mm2, respectively.
Technical Paper

Investigation on Microstructure and Mechanical Properties of Corrosion Resistance Alloy C-2000 Fabricated by Conventional Arc Welding Technique

2019-10-11
2019-28-0177
In the current work the metallurgical and tensile properties of the weld joints of alloy C-2000 were investigated. Welding technique employed in this study is Tungsten Inert Gas Welding (TIG) and Pulsed Current Tungsten Inert Gas (PC-TIG) welding with autogenous mode and Ni-Cr-Mo rich ERNiCrMo-10 filler wire. The results show that PC-TIG weldment obtained the refined microstructure compared to the TIG weldment. Energy dispersive spectroscopy (EDS) showed the extent of Cr segregation was observed in all the weldments. PC-TIG welding shows reduced segregation compared to the corresponding TIG. X-ray diffraction (XRD) corroborated the existence of Ni3Cr2 phases in the weld fusion zone. Tensile test results show the PC-TIG weldment obtained marginally higher tensile properties comparing over the corresponding TIG weldment. The strength of the weldments is inferior in all cases in comparison to base metal.
Technical Paper

Investigation on Mixture Formation and Combustion Process in a CNG-Engine by Using a Fast Response 3D-CFD-Simulation

2004-10-25
2004-01-3004
The research institute FKFS in cooperation with the IVK Universität Stuttgart has recently presented QuickSim, a 3D-CFD-tool, that works integrated into the commercial 3D-CFD-code Star-CD. QuickSim has been developed to cover a vacancy in the market of simulation programs for engine development. The code introduces a new concept in the 3D-CFD-simulation of internal combustion engines (SI-Manifold-Injection and SI-GDI), that drastically reduces the CPU-time in comparison to a conventional 3D-CFD-simulation. QuickSim, as a 3D-CFD-tool, combines the advantages of local resolution of the fluid-dynamical field of internal combustion engines exactly like that provided by traditional 3D-CFD-simulations and the versatility and clearness of the real working-process analysis (WP) and of the full 1D-flow calculations. The CPU-time always remains in an acceptable range (few hours over a full operating cycle for a single-processor computing simulation).
Journal Article

Investigation on Multiple Injection Strategies for Gasoline PPC Operation in a Newly Designed 2-Stroke HSDI Compression Ignition Engine

2015-04-14
2015-01-0830
Partially Premixed Combustion (PPC) of fuels in the gasoline octane range has proven its potential to achieve simultaneous reduction in soot and NOX emissions, combined with high indicated efficiencies; while still retaining proper control over combustion phasing with the injection event, contrary to fully premixed strategies. However, gasoline fuels with high octane number as the commonly available for the public provide a challenge to ensure reliable ignition especially in the low load range, while fuel blends with lower octane numbers present problems for extending the ignition delay in the high load range and avoid the onset of knocking-like combustion. Thus, choosing an appropriate fuel and injection strategy is critical to solve these issues, assuring successful PPC operation in the full engine map.
Technical Paper

Investigation on NOx Storage Characteristics and Aging Influence of Lean NOx Trap Model Catalyst BaO-Pt/Al2O3

2010-04-12
2010-01-0364
Barium oxide (BaO) and platinum (Pt) are the key components in lean NOx trap (LNT) catalysts. Previous work has demonstrated that highly dispersed and bulk-like BaO species have low-temperature (LT) and high-temperature (HT) release features for stored nitrogen dioxide (NO₂). To better understand the roles of both BaO and Pt, a series of BaO/Al₂O₃ and BaO-Pt/Al₂O₃ were prepared and used to investigate the release characteristics of stored NO₂. Two typical BaO-Pt/Al₂O₃ catalysts having 75% and 44% of dispersed BaO, respectively, were aged and used for both the static NO₂ storage and the dynamic NOx elimination by lean-rich cyclic reactions. Results showed that bulk-like BaO plays a lesser role in storing NO₂ than does dispersed BaO. Pt inhibits the formation of nitrates and thus decreases NO₂ storage capacity (NSC) as Pt can catalyze the release, particularly for NO₂ species stored on bulk-like BaO.
Technical Paper

Investigation on Occupant Ejection in High Severity Rear Impact based on Post Mortem Human Subject Sled Tests

2011-11-07
2011-22-0005
Occupant protection in rear impact involves two competing challenges. On one hand, allowing a deformation of the seat would act as an energy absorber in low severity impacts and would consequently decrease the risk of neck injuries. However, on the other hand, large deformations of the seat may increase the likelihood of occupant ejection in high severity cases. Green et al., 1987 analyzed a total of 919 accidents in Great Britain. They found that occupant ejection resulted in a risk of severe injuries and fatalities between 3.6 and 4.5 times higher than those cases where no ejection was observed. The sample included single front, side and rear impacts as well as multiple impacts and rollover. The rate of belt use in the sample was 50%. While this analysis included all forms of impact scenarios, nevertheless, it highlights the relative injury severity of occupant ejection.
Technical Paper

Investigation on Oxidation Stability of Engine Oils Using Laboratory Scale Simulator

1995-10-01
952528
The purposes of this paper are to develop a new laboratory oxidation stability testing method and to clarify factors relative to the viscosity increase of engine oil. Polymerized products, obtained from the oil after a JASO M333-93 engine test, were found to consist mainly of carboxyl, nitrate and nitro compounds and to increase the oil viscosity. A good similarity between the JASO M333-93 test and the laboratory simulation test was found for the polymerized products. The products were obtained not by heating oil only in air but by heating oil while supplying a synthetic blowby gas consisting of fuel pyrolysis products, NO, SO2 and air. The laboratory test has also revealed that the viscosity increase depends on oil quality, organic Fe content and hydrocarbon composition in the fuel. Moreover, it has been found that blowby gas and organic Fe accelerate ZnDTP consumption and that aromatics concentration in the fuel correlates with the viscosity increase of oil.
Technical Paper

Investigation on Particle Size Distribution in the Cylinder of a Passenger Car DI Diesel Engine Using a Fast Gas Sampling Valve

1997-02-24
970875
This paper describes research and development activities dealing with a technique which allows the measurement of gaseous and particulate concentrations inside the combustion chamber. This so-called fast-timed gas sampling technique was used for both the observation of the development of gaseous pollutants and soot during combustion and expansion and for getting information about the particle size history. The system has been applied to a modern passenger car DI diesel engine (Volkswagen). The investigation covers the early combustion phase beginning with the start of combustion and throughout the expansion phase until exhaust valve opening. Particles with a size of about 10 nm up to 1 μm were found. Slight variations in the smaller size classes could be observed during the combustion and expansion process.
Journal Article

Investigation on Pelvis Injury Indices Using a Human Finite Element Model

2010-04-12
2010-01-1169
For accurately predicting different fracture patterns of the pelvis frequently observed in pedestrian accidents with SUV/Mini-van, human finite element (FE) models have been developed. Although those models with failure representation can predict occurrence or nonoccurrence of fractures, quantitative estimation of probability of fractures is not possible. For human models without failure representation, typically stress or strain of elements is used for fracture prediction. However, numerous elements must be evaluated when fracture location is not predetermined. This study investigated methodology for accurately predicting probability of pelvic fractures using a minimal number of output parameters. The hood edge and upper and lower parts of the bumper were chosen for representing vehicle fronts. These components were modeled using rigid surfaces with the stiffness of them represented by springs, to constitute 3-component models.
Technical Paper

Investigation on Performance and Exhaust Emissions Characteristics of a DI Diesel Engine Fueled with Karanja Methyl Ester and Biogas in Dual Fuel Mode

2014-04-01
2014-01-1311
The present study was aimed to run the diesel engine only with two renewable fuels in a dual fuel mode. The karanja methyl ester (KME) derived from karanja oil was used as an injected fuel, and the biogas obtained from the anaerobic digestion of pongamia pinnata (Karanja) de-oiled cakes, was used as a secondary fuel in a single cylinder, four stroke, air cooled, direct injection (DI) diesel engine. Four different flow rates of biogas, viz., 0.3 kg/h, 0.6 kg/h, 0.9 kg/h and 1.2 kg/h were inducted along with the air in the suction of the engine. The results of the experiment were compared with those of diesel and KME operations. Biogas inducted at a flow rate of 0.9 kg/h was found to be the best among all the flow rates, in terms of the performance and emission of the engine. The dual fuel operation showed a higher BSEC than that of diesel operation at full load. In dual fuel operation, about 22% of KME replacement was possible with the biogas flow rate of 0.9 kg/h at full load.
Technical Paper

Investigation on Performance, Combustion and Emission Characteristics of a Turbocharged Low Heat Rejection DI Diesel Engine with Extended Expansion Concept

2009-12-13
2009-28-0006
The fundamental aim of extended expansion concept is to achieve higher work done, which in turn leads to higher thermal efficiency. This concept is compatible with turbocharged engines incorporated with ceramic laced components. Higher efficiency in four stroke engine was achieved by delaying inlet valve closing and exhaust valve opening with the aid of cam lobes. Extended Expansion in diesel engine (miller cycle) was made possible by reducing compression stroke which in turn results in a longer expansion stroke. Experimental investigation was carried out under different load condition conditions on a four cylinder turbocharged DI diesel engine under low heat rejection conditions by using partially stabilized zirconia (PSZ) coating of thickness 0.5 mm to the combustion chamber with modified valve timing. The results was observed with 6% of reduced specific fuel consumption and 13.5% increase in peak pressure, when compared to conventional diesel engine.
Journal Article

Investigation on Pre-Ignition Combustion Events and Development of Diagnostic Solutions Based on Ion Current Signals

2017-03-28
2017-01-0784
Pre-ignition combustions are extremely harmful and undesired, but the recent search for extremely efficient spark-ignition engines has implied a great increase of the in-cylinder pressure and temperature levels, forcing engine operation to conditions that may trigger this type of anomalous combustion much more frequently. For this reason, an accurate on-board diagnosis system is required to adopt protective measures, preventing engine damage. Ion current signal provides relevant information about the combustion process, and it results in a good compromise between cost, durability and information quality (signal to noise ratio levels). The GDI turbocharged engine used for this study was equipped with a production ion current sensing system, while in-cylinder pressure sensors were installed for research purposes, to better understand the pre-ignition phenomenon characteristics, and to support the development of an on-board diagnostic system solely based on ion current measurements.
Technical Paper

Investigation on Pre-ignition and Super-Knock in Highly Boosted Gasoline Direct Injection Engines

2014-04-01
2014-01-1212
High boost and direct injection hold the potential of enhanced power density and fuel consumption in the development of gasoline engines. However, super-knock with strong destructiveness was widely reported at low-speed and high-load operating regime in turbocharged GDI engines. The objective of this study is to clarify the characteristics of super-knock and to try to find some feasible solutions to suppress super-knock. To fast evaluate super-knock at low-speed and high-load regime, a rapid test procedure including three super-knock test sections of 5000 cycles with 3 idle operations, was proposed. The experimental data indicate that pre-ignition is not the sufficient condition for super-knock. Pre-ignition may lead to super-knock, heavy knock, slight knock, and non-knock. Compared with conventional knock, knock intensity of super-knock is much higher and the maximum amplitude of pressure rise at start of knock is more than one order of magnitude higher.
Technical Paper

Investigation on Premixed Charge Compression Ignition Combustion Control Using Multi Pulse Ultrahigh Pressure Injection

2019-04-02
2019-01-1155
Compression ignition (CI) engines provide higher thermal efficiency compared to other internal combustion engines although large amounts of NOx and soot are produced during combustion. NOx and soot emissions can be reduced by using Premixed Charge Compression Ignition (PCCI) combustion. However, the problems of PCCI combustion include limited operating range, unstable start of combustion and an increase in combustion noise. The multi-pulse ultrahigh pressure injection allows fuel to be injected near TDC, improving mixture formation and enhancing the possibility to extend the operating range of PCCI combustion. The objective of this paper is to control and extend the operating range of PCCI combustion using multi-pulse ultrahigh pressure injection. This has not been studied before. Combustion characteristics were investigated using apparent rate of heat release analysis, heat balance analysis, exhaust emission measurement and soot concentration measurement.
Technical Paper

Investigation on Rapid Lean-Burning of Spark Ignition LPG Engines

2006-11-13
2006-32-0079
An electronic controlled rapid burning system with a high energy, dual-spark plug ignition system in a high speed LPG engine with a sole LPG-fueled port fuel injection (PFI) system for the steady state lean operation is discussed in this paper. A Multi-channel SI engine Combustion Process Analysis System was developed in this research. The synchronizing and asynchronous ignition timing can be realized by ECU and the control strategies according to the engine operation conditions. Test results showed that the lean mixture flame propagation was improved by the enhanced ignition energy intensity in this system. To cooperate with the combustion chamber and the spark location, the flame propagation distance was shortened for rapid burning.
Technical Paper

Investigation on Relationship Between Thermal Efficiency and NOx Formation in Ultra-Lean Combustion

1999-09-28
1999-01-3328
With emergence of fuel cells which have much better thermal efficiency than internal combustion engines (later abbreviated as ICE), ICE has to improve its thermal efficiency to the level of 50%. One of the ways to improve the thermal efficiency of ICE is to utilize ultra-lean combustion and several technical papers have been published. But it seems the thermal efficiency has not been improved as the theory predicts. The test data of these technical papers were re-examined and it was concluded that the thermal dissociation of burned gas and NOx formation is the key factor of a discrepancy between the theory and the actual test data. In order to prevent an occurrence of thermal dissociation, emulsified fuels (mixture of carbonaceous fuels with water) was proposed.
Technical Paper

Investigation on Relationship between LSPI and Lube Oil Consumption and Its Countermeasure

2021-04-06
2021-01-0567
LSPI (Low speed pre-ignition) is a serious issue in highly boosted gasoline engines. The causes have been studied and lube oil affects the onset. In order to examine the effect of lubricating oil consumption on super knock caused by pre-ignition, measurements of in-cylinder pressure, temperature, oil consumption by sulfur trace at steady and transient conditions were conducted. Also, new piston ring pack was applied to reduce both of blow-by gas and oil consumption. As a result, accumulated oil during deceleration was found to cause pre-ignition after acceleration. The pre-ignition frequency is much higher than in steady condition, however, the amount of oil does not directly affect pre-ignition frequency, but dilution of oil and evaporation of oil/fuel and other parameters, such as temperature, pressure, and oil additives determine pre-ignition onset. In order to see the mechanism of pre-ignition onset, numerical simulations were conducted.
Technical Paper

Investigation on Safety Improvements by Lighting for Pedestrians and Cyclists

2020-04-14
2020-01-0633
The paper will describe actual investigations on safety improvements by new lighting functions. Especially the new chance of projections on the road surface either by simple reflector technology or by modern signature and pattern projection will be investigated. Different prototype patterns will be checked by a set of new parameters, e.g. reaction time to signals, clear understanding, minimum and optimum visual contrasts. The results show that high contrasts and dynamic effects are most effective.
X