Refine Your Search

Search Results

Technical Paper

Design and Control of a Light-Weight Drive-Integrated 48 V BLDC Motor for Radiator Fan in Hybrid Vehicle

2015-04-14
2015-01-1207
In small car segment, as far as hybridization is concerned, the space and safety constraint demands use of lower voltage viz., 48 V as compared to >100-volt-systems used for vehicles in other segments. These systems also have advantage of reduced copper weight due to reduced current. As 12 V systems are replaced by the 48 V systems, the auxiliary 12 V loads would necessitate implementation of a DC-DC converter. Considering the requirements of auxiliary loads that are fed from 12 V battery, the power rating of the DC-DC converter can get considerably high resulting in increased size. Hence, it is advisable to re-design at least some of the 12 V auxiliary systems to 48 V such as the radiator fan motor. This, along with the issues faced in the existing PMDC Motor with regard to efficiency and sizing have generated interest to investigate better alternatives for the motor.
Technical Paper

Electric Vehicle Behavioral Modeling Methods for Motor Drive System EMI Design Optimization

2015-04-14
2015-01-1204
Electromagnetic interference (EMI) is a common problem in power electronics systems. Pulse-width modulation (PWM) control of semiconductor devices in a power converter circuit creates discontinuity in voltage and current with rich harmonics over a broad frequency range, creating both conducted and radiated noise. The increase in switching speed enabled by new power semiconductor devices helps to reduce converter size and reduce switching losses, but further exacerbates the EMI problem. Complying with regulatory EMI emission limits requires the use of EMI filters in almost all power converter designs, and EMI filters are often the dominant elements for system volume, weight, and cost. Electromagnetic interference (EMI) filtering is a critical driver for volume and weight for many applications, particularly in airborne and other mobile platforms.
Technical Paper

Electrochemically Powered Vehicles: Current Possibilities and Investigation of the Li-O2 Electrochemical Reaction on Catalyst Surfaces: Implications for a Metal-Air Battery

2015-04-14
2015-01-1179
Significant research has been underway for many years to develop technologies to electrochemically power vehicles with limited success. Unfortunately, most technologies fail to achieve theoretical performance and/or are prohibitively too expensive for mass marketed vehicles. Most of the issues with electrochemical technologies can ultimately be attributed to materials issues, whether it is cost, durability, or activity. A broad examination of potential electrochemical technologies is provided identifying key materials issues with each. Included are the results of recent research involving lithium-oxygen batteries. The observations from this research have identified the electrochemical product, lithium peroxide, and its properties to be the most pressing material issue for lithium-oxygen battery. A future research vision is proposed counter to the current research trend of electrocatalyst/electrolyte development.
Technical Paper

Experimental Measurements of Thermal Characteristics of LiFePO4 Battery

2015-04-14
2015-01-1189
A major challenge in the development of the next generation electric and hybrid electric vehicle (EV and HEV) technology is the control and management of heat generation and operating temperatures. Vehicle performance, reliability and ultimately consumer market adoption are integrally dependent on successful battery thermal management designs. In addition to this, crucial to thermal modeling is accurate thermo-physical property input. Therefore, to design a thermal management system and for thermal modeling, a designer must study the thermal characteristics of batteries. This work presents a purely experimental thermal characterization of thermo-physical properties of a lithium-ion battery utilizing a promising electrode material, LiFePO4, in a prismatic pouch configuration. In this research, the thermal resistance and corresponding thermal conductivity of prismatic battery materials is evaluated.
Technical Paper

A Lithium-Ion Battery Optimized Equivalent Circuit Model based on Electrochemical Impedance Spectroscopy

2015-04-14
2015-01-1191
An electrochemical impedance spectroscopy battery model based on the porous electrode theory is used in the paper, which can comprehensively depict the internal state of the battery. The effect of battery key parameters (the radius of particle, electrochemical reaction rate constant, solid/electrolyte diffusion coefficient, conductivity) to the simulated impedance spectroscopy are discussed. Based on the EIS analysis, a lithium-ion battery optimized equivalent circuit model is built. The parameters in the equivalent circuit model have more clear physical meaning. The reliability of the optimized equivalent circuit model is verified by compared the model and experiments. The relationship between the external condition and internal resistance could be studied according to the optimized equivalent circuit model. Thus the internal process of the power battery is better understood.
Technical Paper

Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

2015-04-14
2015-01-1190
As part of the U.S. Department of Energy's Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level two electric vehicle supply equipment, while two were exclusively DC fast charged with a 50 kilowatt fast charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals throughout on-road mile accumulation. Battery tests performed include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests.
Technical Paper

Pedestrian Throw Distance Impact Speed Contour Plots Using PC-Crash

2015-04-14
2015-01-1418
Pedestrian throw distance can be used to evaluate vehicle impact speed for wrap or forward projection type pedestrian collisions. There have been multiple papers demonstrating relationships between the impact speed of a vehicle and the subsequent pedestrian throw distance. In the majority of instances, the scenarios evaluated focused on the central width of the vehicle impacting the pedestrian. However, based on investigated pedestrian collisions, the location where the pedestrian has engaged with the vehicle can and does significantly influence the throw distance (and projection) and subsequent impact speed analysis. PC-Crash was used to simulate multiple pedestrian impacts at varying speeds and vehicle impact locations, creating pedestrian throw distance impact speed contour plots. This paper presents the pedestrian throw distance impact speed contour plots for a range of nine vehicle types.
Technical Paper

Medium Duty North American Delivery Van Frontal Barrier Crash Test Data for Crash Reconstruction

2015-04-14
2015-01-1420
Traditional accident reconstruction analysis methodologies include the study of the crush-energy relationship of vehicles. By analyzing the measured crush from a vehicle involved in a real world accident and comparing it to a test vehicle with a known energy, from a crash test, the real world vehicle's damage energy can be evaluated. In addition, the change-in-velocity (Delta-V) can be calculated. The largest source of publicly available crash tests is from the National Highway Traffic Safety Administration (NHTSA). NHTSA conducts numerous Federal Motor Vehicle Safety Standard (FMVSS) compliance and New Car Assessment Program (NCAP) testing for many passenger vehicles for sale in the United States.
Technical Paper

A Comparison of Bayesian Speed Estimates from Rollover and Critical Speed Methods

2015-04-14
2015-01-1434
Martinez and Schlueter [6] described a three-phase model for reconstructing tripped rollover crashes, where the vehicle's path is divided into pre-trip, trip, and post-trip phases. Brach and Brach [9] also described this model and noted that the trajectory segmentation method for the pre-trip phase needed further validation. When a vehicle leaves a measurable yaw mark at the start of its pre-trip phase it might be possible to compare estimates from the three-phase model to those obtained using the critical speed method, and this paper describes Bayesian reconstruction of two such cases. For the first, the 95 percent confidence interval for the case vehicle's initial speed, estimated using the critical speed method, was (64 mph, 81 mph) while the 95 percent confidence interval via the three-phase model was (66 mph, 79 mph).
Technical Paper

Field-based Assessments of Various AIS2+ Head Risk Curves for Frontal Impact

2015-04-14
2015-01-1437
In the present study, various risk curves for moderate-to-fatal head injury (AIS2+) were theoretically assessed by comparing model-based injury rates with field-based injury rates. This was accomplished by applying the risk curves in corresponding field models. The resulting injury rates were considered from two perspectives: aggregate (0-56 kph events) and point-estimate (higher-speed, barrier-like events). Four risk curves were studied: a HIC15-based curve from Mertz et al. (1997), a BRIC-based curve from Takhounts et al. (2011), a BrIC-based curve from Takhounts et al. (2013) and a Concussion-Correlate-based curve from Rowson et al. (2013). The field modeling pertained to adult drivers in 11-1 o'clock, towaway, full-engagement frontal crashes in the National Automotive Sampling System (NASS, calendar years = 1993-2012), and the model-year range of the passenger vehicles was 1985-2010.
Technical Paper

Injury Sources for Second Row Occupants in Frontal Crashes Considering Age and Restraint Condition Influence

2015-04-14
2015-01-1451
The current study examined field data in order to document injury rates, injured body regions, and injury sources for persons seated in the second row of passenger vehicles. It was also intended to identify whether these varied with respect to age and restraint use in vehicles manufactured in recent years. Data from the 2007-2012 National Automotive Sampling System (NASS/CDS) was used to describe occupants seated in the second row of vehicles in frontal crashes. Injury plots, comparison of means and logistic regression analysis were used to seek factors associated with increased risk of injury. Restraint use reduced the risk of AIS ≥ 2 injury from approximately 1.8% to 5.8% overall. Seventy nine percent of the occupants in the weighted data set used either a lap and shoulder belt or child restraint system. The most frequently indicated injury source for persons with a MAIS ≥ 2 was “seat, back support”, across restraint conditions and for all but the youngest occupants.
Technical Paper

Economical Pedestrian Safety Equipment Countermeasures

2015-04-14
2015-01-1462
Each year, more than 270,000 pedestrians lose their lives on the world's roads. Globally, pedestrians constitute 22% of all road traffic fatalities, and in some countries this proportion is as high as two thirds of all road traffic deaths. Millions of pedestrians are non-fatally injured and some of whom are left with permanent disabilities. These incidents cause much suffering and grief as well as economic hardship. To lower the rate of pedestrian injuries and fatalities, the Euro-Ncap committee adopted an overall impact star-grade system in 2009, making the pedestrian protection cut-off score required to obtain the best impact-star grade more stringent until 2016. It is very difficult to surpass the enhanced pedestrian cut-off score using past methods. In this paper, I determine the hood's worst-performing areas in terms of pedestrian protection by analyzing previous pedestrian test results.
Technical Paper

Typical Pedestrian Accident Scenarios in China and Crash Severity Mitigation by Autonomous Emergency Braking Systems

2015-04-14
2015-01-1464
In China, nearly 25% of traffic fatalities are pedestrians. To avoid those fatalities in the future, rapid development of countermeasures within both passive and active safety is under way, one of which is autonomous braking to avoid pedestrian crashes. The objective of this work was to describe typical accident scenarios for pedestrian accidents in China. In-depth accident analysis was conducted to support development of test procedures for assessing Autonomous Emergency Braking (AEB) systems. Beyond that, this study also aims for estimating the mitigation of potential crash severity by AEB systems. The China In-depth Accident Study (CIDAS) database was searched from 2011 to 2014 for pedestrian accidents. A total of 358 pedestrian accidents were collected from the on-site in-depth investigation in the first phase of CIDAS project (2011-2014).
Technical Paper

Rollover Testing of a Sport Utility Vehicle (SUV) with an Inertial Measurement Unit (IMU)

2015-04-14
2015-01-1475
A follow-up case study on rollover testing with a single full-size sport utility vehicle (SUV) was conducted under controlled real-world conditions. The purpose of this study was to conduct a well-documented rollover event that could be utilized in evaluating various methods and techniques over the phases associated with rollover accidents. The phases documented and discussed, inherent to rollovers, are: pre-trip, trip, and rolling phases. With recent advances in technology, new devices and techniques have been designed which improve the ability to capture and document the unpredictable dynamic events surrounding vehicle rollovers. One such device is an inertial measurement unit (IMU), which utilizes GPS technology along with integrated sensors to report and record measured dynamic parameters real-time. The data obtained from a RT-4003 IMU device are presented and compared along with previous test data and methodology.
Technical Paper

CAE Based Development of an Ejection Mitigation (FMVSS 226) SABIC using Design for Six Sigma (DFSS) Approach

2015-04-14
2015-01-1473
NHTSA issued the FMVSS 226 ruling in 2011. It established test procedures to evaluate countermeasures that can minimize the likelihood of a complete or partial ejection of vehicle occupants through the side windows during rollover or side impact events. One of the countermeasures that may be used for compliance of this safety ruling is the Side Airbag Inflatable Curtain (SABIC). This paper discusses how three key phases of the optimization strategy in the Design for Six Sigma (DFSS), namely, Identify; Optimize and Verify (I_OV), were implemented in CAE to develop an optimized concept SABIC with respect to the FMVSS 226 test requirements. The simulated SABIC is intended for a generic SUV and potentially also for a generic Truck type vehicle. The improved performance included: minimization of the test results variability and the optimization of the ejection mitigation performance of the SABIC.
Technical Paper

CAE Prediction and Test Correlation for Tractor Roll-over Protective Structure (ROPS)

2015-04-14
2015-01-1476
Roll-over protective structures (ROPS) are safety devices which provide a safe environment for the tractor operator during an accidental rollover. The ROPS must pass either a dynamic or static testing sequence or both in accordance with SAE J2194. These tests examine the performance of ROPS to withstand a sequence of loadings and to see if the clearance zone around the operator station remains intact in the event of an overturn. In order to shorten the time and reduce the cost of new product development, non-linear finite element (FE) analysis is practiced routinely in ROPS design and development. By correlating the simulation with the results obtained from testing a prototype validates the CAE model and its assumptions. The FE analysis follows SAE procedure J2194 for testing the performance of ROPS. The Abaqus version 6.12 finite element software is used in the analysis, which includes the geometric, contact and material nonlinear options.
Technical Paper

Injury Distributions of Belted Drivers in Various Types of Frontal Impact

2015-04-14
2015-01-1490
Injury distributions of belted drivers in 1998-2013 model-year light passenger cars/trucks in various types of real-world frontal crashes were studied. The basis of the analysis was field data from the National Automotive Sampling System (NASS). The studied variables were injury severity (n=2), occupant body region (n=8), and crash type (n=8). The two levels of injury were moderate-to-fatal (AIS2+) and serious-to-fatal (AIS3+). The eight body regions ranged from head/face to foot/ankle. The eight crash types were based on a previously-published Frontal Impact Taxonomy (FIT). The results of the study provided insights into the field data. For example, for the AIS2+ upper-body-injured drivers, (a) head and chest injury yield similar contributions, and (b) about 60% of all the upper-body injured drivers were from the combination of the Full-Engagement and Offset crashes.
Technical Paper

Influence of Introduction of Oblique Moving Deformable Barrier Test on Collision Compatibility

2015-04-14
2015-01-1492
The National Highway Traffic Safety Administration (NHTSA) has developed moving deformable barriers for vehicle crash test procedures to assess vehicle and occupant response in partial overlap vehicle crashes. For this paper, based on the NHTSA Oblique Test procedure, a mid-size sedan was tested. The intent of this research was to provide insight into possible design changes to enhance the oblique collision performance of vehicles. The test results predicted high injury risk for BrIC, chest deflection, and the lower extremities. In this particular study, reducing lower extremity injuries has been focused on. Traditionally, lower extremity injuries have been reduced by limiting the intrusion of the lower region of the cabin's toe-board. In this study, it is assumed that increasing the energy absorbed within the engine compartment is more efficient than reinforcing the passenger compartment as a method to reduce lower extremity injuries.
Technical Paper

Front Underride Protection Devices (FUPDs): Multi-Objective Optimization

2015-04-14
2015-01-1488
This work investigates a multi-objective optimization approach for minimizing design parameters for Front Underride Protection Devices (FUPDs). FUPDs are a structural element for heavy vehicles to improve crashworthiness and prevent underride in head-on collision with another vehicle. The developed dsFUPD F9 design for a Volvo VNL was subjected to modified ECE R93 testing with results utilized in the optimization process. The optimization function utilized varying member thickness to minimize deformation and system mass. Enhancements to the function were investigated by introducing variable materials and objectifying material cost. Alternative approaches for optimization was also needed to be explored. Metamodel-based and Direct simulation optimization strategies were compared to observe there performance and optimal designs. NSGA-II, SPEA-II Genetic Algorithms and Adaptive Simulated Annealing algorithms were under investigation in combination with three meta-modeling techniques.
Technical Paper

Small Overlap Impact Countermeasures for Automobiles

2015-04-14
2015-01-1491
Automotive OEMs, insurance agencies and regulatory bodies are continuously looking at various accident statistics and proper ways of evaluating unaccounted (as per current regulations and safety ratings) accident scenarios to improve the safety standards of cars. Small overlap and oblique impacts during which a corner of a car hits a tree or the corner of another vehicle are two such situations. Most of the vehicles that are on road scored low when tested for these impact scenarios. This paper focuses on development of energy-absorbing members, using engineering thermoplastics materials, which can be mounted on the BIW of a vehicle, as countermeasures to small overlap impact. Various design and material configurations options, including metal plastic and composite plastic structural members mounted on the BIW are evaluated through CAE studies, against small overlap/oblique impact scenarios.
X