Refine Your Search

Search Results

Technical Paper

Development of a Super-Light Substrate for LEV III/Tier3 Emission Regulation

2015-04-14
2015-01-1001
With the increasing number of automobiles, the worldwide problem of air pollution is becoming more serious. The necessity of reducing tail-pipe emissions is as high as ever, and in countries all over the world the regulations are becoming stricter. The emissions at times such as after engine cold start, when the three-way catalyst (TWC) has not warmed up, accounts for the majority of the emissions of these pollutants from vehicles. This is caused by the characteristic of the TWC that if a specific temperature is not exceeded, TWC cannot purify the emissions. In other words, if the catalyst could be warmed up at an early stage after engine start, this would provide a major contribution to reducing the emissions. Therefore, this research is focused on the substrate weight and investigated carrying out major weight reduction by making the porosity of the substrate larger than that of conventional products.
Technical Paper

FASTSim: A Model to Estimate Vehicle Efficiency, Cost and Performance

2015-04-14
2015-01-0973
The Future Automotive Systems Technology Simulator (FASTSim) is a high-level advanced vehicle powertrain systems analysis tool supported by the U.S. Department of Energy's Vehicle Technologies Office. FASTSim provides a quick and simple approach to compare powertrains and estimate the impact of technology improvements on light- and heavy-duty vehicle efficiency, performance, cost, and battery life. The input data for most light-duty vehicles can be automatically imported. Those inputs can be modified to represent variations of the vehicle or powertrain. The vehicle and its components are then simulated through speed-versus-time drive cycles. At each time step, FASTSim accounts for drag, acceleration, ascent, rolling resistance, each powertrain component's efficiency and power limits, and regenerative braking. Conventional vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, compressed natural gas vehicles, and fuel cell vehicles are included.
Technical Paper

Model-Based Testing: Automatic Generation of Test Cases, Test Data and Test Procedures from SysML Models

2015-09-15
2015-01-2553
Model-based development is a well-established and widely used technique to design and implement systems by specifying the overall architecture of a system and its behavior directly in modeling tools such as PTC Integrity Modeler, Enterprise Architect, Modelio, or Papyrus/Eclipse. The next step forward in this process is using the same framework also for the design and specification of the tests for these systems. Verified Systems International GmbH offers with RT-Tester MBT a novel approach to model-based embedded systems testing, which we are going to present in this paper. Model-based testing (MBT) offers automated generation of test cases, test data and test procedures for model-in-the-loop, hardware-in-the-loop and system testing from UML/SysML models describing the intended system behavior [17,20].
Technical Paper

Ground Test Facilities and Integration Concepts for Combat Air Systems at Airbus Defence and Space

2015-09-15
2015-01-2552
The paper will start with a short introduction to the structure of the Airbus Group, before addressing the Airbus Defence and Space business line Military Aircraft. The Rig Operation department for airborne solutions within this organisation is responsible for the development, design, operation and support of ground test facilities and test support systems, which are used for design validation and verification of civil and military air systems. The main part of this document will start with a typical sequence of tests in our Test Centre. The presentation will then focus on some advanced methods used during the qualification of test equipment and to improve the efficiency of ground test facilities in terms of cost, time and risk reduction. The next topic is tool-based rig management and control, beginning with test preparation and test shift planning and also covering aspects of configuration control, automatisation of test facilities and support of the test report.
Technical Paper

CAE-based Robustness Evaluation of Brake Systems

2015-09-27
2015-01-2656
Original Equipment Manufacturers (OEM's) target lower probabilities of brake noise as part of quality requirements for disc brake systems. Since brake noise is significantly controlled by variations in environmental conditions or alterations of brake systems, the brake system needs “in build” robustness against those variations to minimize noise during its lifecycle. In the past, proof of brake noise quality was primarily based on tests. Currently, it is based on a combination of simulation and testing. Due to cost and time schedule constraints, improvement cycles late in the development process need to be reduced. That is only possible with an increase of Computer Aided Engineering (CAE) based robustness evaluation taking into account all relevant sources of variation which may have an influence on brake noise occurrence.
Technical Paper

Aircraft Vertical Route Optimization Deterministic Algorithm for a Flight Management System

2015-09-15
2015-01-2541
This paper describes an optimization algorithm that provides an economical Vertical Navigation profile plan by finding the combinations of climb, cruise and descent speeds, as well as the altitudes for an aircraft to minimize flight costs. The computational algorithm profits from a space search reduction algorithm to reduce the initial number of speed and altitude combinations. Additional search space reductions were performed with the implementation of the branch and cut algorithm. A bounding function that correctly estimates the flight cost considering step climbs was developed to reduce the number of calculations. The full flight fuel burn cost was obtained using a performance database- based method. The fuel flight cost was computed using the cost index. This algorithm used a performance database instead of equations of motion to compute fuel burn. This database was developed and validated by our industrial partner using real flight experimental data.
Technical Paper

Human Factors Drivers Behind Next Generation AV2020 Cockpit Display

2015-09-15
2015-01-2537
The efficiency of the glass cockpit paradigm has faded away with the densification of the aeronautical environment. Today's problem lies with “non-defective aircraft” monitored by “perfectly trained crews” still involved in fatal accidents. One explanation is, at crew level, that we have reached a system complexity that, while acceptable in normal conditions, is hardly compatible with human cognitive abilities in degraded conditions. The current mitigation of such risk still relies on the enforcement through intensive training of an ability to manage extremely rare (off-normal) situations. These are explained by the potential combination of failures of highly complex systems with variable environment & with variable humans.
Technical Paper

Automated ATM System Enabling 4DT-Based Operations

2015-09-15
2015-01-2539
As part of the current initiatives aimed at enhancing safety, efficiency and environmental sustainability of aviation, a significant improvement in the efficiency of aircraft operations is currently pursued. Innovative Communication, Navigation, Surveillance and Air Traffic Management (CNS/ATM) technologies and operational concepts are being developed to achieve the ambitious goals for efficiency and environmental sustainability set by national and international aviation organizations. These technological and operational innovations will be ultimately enabled by the introduction of novel CNS/ATM and Avionics (CNS+A) systems, featuring higher levels of automation. A core feature of such systems consists in the real-time multi-objective optimization of flight trajectories, incorporating all the operational, economic and environmental aspects of the aircraft mission.
Technical Paper

Augmented Head Mount Virtual Assist for Pilot

2015-09-15
2015-01-2536
Recent years have seen a rise in the number of air crashes and on board fatalities. Statistics reveal that human error constitutes upto 56% of these incidents. This can be attributed to the ever growing air traffic and technological advancements in the field of aviation, leading to an increase in the electronic and mechanical controls in the cockpit. Accidents occur when pilots misinterpret gauges, weather conditions, fail to spot mechanical faults or carry out inappropriate actions. Currently, pilots rely on flight manuals (hard copies or an electronic tablet) to respond to an emergency. This is prone to human error or misinterpretation. Also, a considerable amount of time is spent in seeking, reading, interpreting and implementing the corrective action. The proposed augmented head mount virtual assist for the pilot eliminates flight manuals, by virtually guiding the pilot in responding to in-flight necessities.
Technical Paper

Self-Adaptive Embedded Network

2015-09-15
2015-01-2523
In the Integrated Modular Avionics (IMA) domain, THALES developed a high performance communication network named SAEN (Self Adaptive Embedded Network). SAEN is a switchless network solution, fully embedded in a single Network Component Interface (NCI), aimed to interconnect easily several modules of a system, in any mesh network topology. Once each module is equipped with its network component, just connect them together to realize the wanted topology and switch ‘on’ the modules power supplies. At power-on, all the nodes of the network aggregate to form a complete global and coherent network, autonomously managing its configuration and the optimal static routing between any emitter and receiver. The constituted network is deterministic, autonomous, self-discovering, and auto-adapting to the network variations and guarantees an optimal routing in any situation of the graph, as long as a path exists.
Technical Paper

Evaluation of Key Certification Aspects of Multi Core Platforms for Safety Critical Applications in Avionics Industry

2015-09-15
2015-01-2524
Multi core platforms offer high performance at low power and have been deemed as future of size, weight and power constrained applications like avionics safety critical applications. Multi core platforms are widely used in non-real time systems where the average case performance is desired like in consumer electronics, telecom domains. Despite these advantages, multi core platforms (hardware and software) pose significant certification challenges for safety critical applications and hence there has been limited usage in avionics and other safety critical applications. Many multicore platform solutions which can be certified to DO-254 & DO 178B Level A are commercially available. There is a need to evaluate these platforms w.r.t certification requirements before deploying them in the safety critical systems thereby reducing the program risks. This paper discusses the advantages of multi core platforms in terms of performance, power consumption and weight/size.
Technical Paper

Nurturing Innovation - Growing Our Future

2015-09-15
2015-01-2626
The nature of aerospace innovation has changed dramatically in the past few decades, including some subtle changes that might go unnoticed to a casual observer outside our industry. The achievements of the 1950s through the 1990s were often epitomized by events that made headlines throughout the world - for example, breaking the sound barrier, walking on the Moon, receiving the first images from a roving vehicle on Mars, or launching the first airliner designed solely using computers. Aerospace engineers today are creating feats that are no less innovative or impressive but that often lack the universal sensational appeal of those past “miracles.” Now the accomplishments are likely to be concerned with using data more effectively to reduce risk and enhance the safety and affordability of products and services rather than flying faster, higher or more stealthily.
Technical Paper

Novel World War II Aircraft Design Features

2015-09-15
2015-01-2580
During the 1930s and 1940s, aircraft designers worked on developing novel design features. Some of these features worked and are commonplace today. Other features fell by the wayside and have been forgotten. These novel design features include laminar flow wings, low-drag cooling systems, buried propulsion systems, canard configurations, jet engines, break-away wing tips, pressure cabins and swept wings. The development and applications of these features will be examined. Specific technical details of these applications will be included in this examination. For the design features that fell by the wayside, the reasons for this outcome will be discussed
Technical Paper

Spy Blimps Revisited: A Performance Comparison between Two Competing Approaches

2015-09-15
2015-01-2579
While operational airships globally number in the low dozens, interest in buoyant or semi-buoyant platforms continues to arouse imaginations of commercial and military planners and developers alike. The airship-as-advertisement business model is the only model that has proven sustainable on any scale since the crash of the initially successful LZ-128 Hindenburg effectively ended regular passenger and cargo transport by airship, and the 1962 termination of the US Naval airship program terminated regular large-scale surveillance from airships. Efforts in the US and Japan during the 2000's to have a self-sustaining sight-seeing business model using the modern semi-rigid Zeppelin NT both failed. In theory, the buoyant nature of airships provides compelling endurance and cost-per-ton-mile capability which fills a niche arguably not currently occupied by other modes of transportation.
Technical Paper

Slung Load Divergence Speed Predictions for Vehicle Shapes

2015-09-15
2015-01-2570
Loads slung under aircraft can go into divergent oscillations coupling multiple degrees of freedom. Predicting the highest safe flight speed for a vehicle-load combination is a critical challenge, both for military missions over hostile areas, and for evacuation/rescue operations. The primary difficulty was that of obtaining well-resolved airload maps covering the arbitrary attitudes that a slung load may take. High speed rotorcraft using tilting rotors and co-axial rotors can fly at speeds that imply high dynamic pressure, making aerodynamic loads significant even on very dense loads such as armored vehicles, artillery weapons, and ammunition. The Continuous Rotation method demonstrated in our prior work enables routine prediction of divergence speeds. We build on prior work to explore the prediction of divergence speed for practical configurations such as military vehicles, which often have complex bluff body shapes.
Technical Paper

Development of a High-Fidelity Simulation Model for a Research Environment

2015-09-15
2015-01-2569
During aircraft development, mathematical models are elaborated from our knowledge of fundamental physical laws. Those models are used to gain knowledge in order to make the best decisions at all development stages. Depending on the application, different models can be used to describe, in one way or another, the aircraft behavior. The goal of this paper is to develop a high-fidelity aircraft simulation model that is exceptionally capable, flexible and responsive to the needs of the researchers. The proposed model includes nonlinear aerodynamic coefficients, a generic engine model and a complete autopilot with auto-landing. The simulation model has been designed to help researchers develop and validate new algorithms for trajectory optimization, control design, stability analysis and parameter estimation. To make it easy to use, the simulation model also includes algorithms for stability and control analysis.
Technical Paper

Validation and Update of Aerodynamic Database at Extreme Flight Regimes

2015-09-15
2015-01-2567
Aerodynamic database update from the flight tests using system identification techniques is a crucial tool for the development of control laws and high fidelity simulators. For the certification of aircraft under test, aero-database needs to be validated from flight tests throughout the flight envelope and also to certain levels beyond the envelope boundaries. Validation of aero-database close to envelope boundaries entails additional complexities which necessitates careful handling of flight data identification and update process. This paper discusses the approach adopted for aero-database update and flight clearance, followed by a discussion on the issues relevant in the extreme flight test regimes, such as, flow angle accuracy at higher angles-of-attack, center-of-gravity variation with fuel pitch angle for high-g maneuvering conditions and inaccuracies in Mach number at transonic speeds.
Technical Paper

Predicted Device-Degradation Failure-Rate

2015-09-15
2015-01-2555
There is a concern that the continuing trend on miniaturization (Moore's law) in IC design and fabrication might have a negative impact on the device reliability. To understand and to possibly quantify the physics underlying this concern and phenomenon, it is natural to proceed from the experimental bathtub curve (BTC) - reliability “passport” of the device. This curve reflects the combined effect of two major irreversible governing processes: statistics-related mass-production process that results in a decreasing failure rate with time, and reliability-physics-related degradation (aging) process that leads to an increasing failure rate. It is the latter process that is of major concern of a device designer and manufacturer. The statistical process can be evaluated theoretically, using a rather simple predictive model.
Technical Paper

Integration and Performances Analysis of a Data Distribution Service Middleware in Avionics

2015-09-15
2015-01-2554
The amount of functionalities in modern aircrafts is increasing to satisfy performance, safety and economic benefits. Therefore, the communication needs of avionic systems are growing. Furthermore, the portability and reusability of applications are current challenges of the aerospace industry. The use of the Data Distribution Service (DDS) middleware technology would reduce the complexity of communications and ease the portability and reusability of applications with its standardised interface. Few previous works used a DDS middleware within the aerospace industry and those didn't take into account the impact of this technology on the applications performances. Therefore, this paper presents an impact evaluation of using a DDS middleware on the performances of avionic applications.
Technical Paper

Item Unique Identification Cost Benefit Study for Legacy Gas Turbine Engine Fleet Maintenance

2015-09-15
2015-01-2486
The USAF T56 engine Program Office has adopted a unique maintenance approach which utilizes the concept of complete system reliability in order to optimize their cost of workscoping aircraft gas turbine engines. While classical Reliability Centered Maintenance (RCM) focuses on the actual reliability and failure modes representative of a particular system, its benefits are limited since it only describes individual system components9. The workscope cost optimization program provides the user with recommended optimal repair workscopes based on the underlying reliability and cost of repair options. This maintenance concept is based upon the methodology documented in SAE Aerospace Recommended Practice (ARP) JA6097, which is a “Best Practices Guide” established to provide direction in objectively determining which other maintenance to perform on a system when that system requires corrective action, with the goal of improving overall system reliability at the lowest possible cost.
X