Refine Your Search

Search Results

Technical Paper

Continued Development of a High-Fidelity 1D Physics-Based Engine Simulation model in MATLAB/Simulink

2015-04-14
2015-01-1619
Engine and drivetrain simulation has become an integral part of the automotive industry. By creating a virtual representation of a physical system, engineers can design controllers and optimize components without producing a prototype, thus reducing design costs. Among the numerous simulation approaches, 1D physics-based models are frequently implemented due to balanced performance between accuracy and computational speed. Several 1D physics-based simulation software packages currently exist but cannot be directly implemented in MALAB/Simulink. To leverage MATLAB/Simulink's powerful controller design and simulation capabilities, a 1D physics-based engine simulation tool is currently being developed at The University of Alabama. Previously presented work allowed the user to connect engine components in a physically representative manner within the Simulink environment using a standard block connection scheme and embedded MATLAB functions.
Technical Paper

A Study of Fuel Economy Improvement on US Fuel Economy Test Cycle by Model Based Cooled HP EGR System and Robust Logic through S-FMEA

2015-04-14
2015-01-1637
This paper focuses on the vehicle test result of the US fuel economy test cycles such as FTP75, HWY and US06 with model based Cooled EGR system. Cooled EGR SW function was realized by Model Based Development (internal rapid prototyping) using iRPT tool. With EGR, mixing exhaust gas with clean air reduces the oxygen concentration in the cylinder charge, as a result, the combustion process is slowed, and the combustion temperature drops. This experiment confirmed that the spark timing was more advanced without knocking and manifold pressure was increased in all cases with EGR. A positive potential of fuel economy improvement on FTP mode, US06 mode have seen in this experiment but not for HWY where the engine load is quite low and the spark advance is already optimized. As a result, fuel economy was increased by maximum 3.3% on FTP, 2.7% on US06, decreased by 0.3% on HWY mode respectively with EGR.
Technical Paper

Individual Cylinder Control for Air-Fuel Ratio Cylinder Imbalance

2015-04-14
2015-01-1624
Recently emissions regulations are being strengthened. An air-fuel ratio cylinder imbalance causes emissions to increase due to universal exhaust gas oxygen (UEGO) sensor error or exhaust gas oxygen (EGO) sensor error. Various methods of reducing an air-fuel ratio cylinder imbalance have been developed. It is preferable for a control system to operate over a wide range of conditions. Our target is to expand the operating conditions from idling to high load conditions. Our approach is to use both an UEGO sensor and a crank angle sensor. A two-revolution frequency component calculated from the UEGO sensor output signal and angular acceleration calculated from the crank angle sensor output signal are used to identify the cylinder where the air-fuel ratio error occurs.
Technical Paper

Design of Multitask Template for Diesel Engine Control Software Based on Real-Time Operating System

2015-04-14
2015-01-1633
A multi-task control template has been established for diesel engine control system in this paper. By analyzing the function requirements and control strategies of electronic diesel engine control system, the data flow diagram has been obtained. Based on the mechanisms and characteristics of the RTOS as well as the design methods of real-time system software, modules in data flow graph has been divided further. So that the multi-tasks of the control system have been drawn. Then each task's properties have been designed. Afterwards, every task and the embedded RTOS have been transplanted into Freescale MPC5554 microcontroller. After that the multi-tasks have been tested and optimized in a Hardware-in-the-Loop Simulation (HILS) system of dSPACE AUTOBOX. The results show good reusability and real-time performance and it can increase the efficiency of the diesel engine control software development.
Technical Paper

Testing and Development of an Enhanced and Cost Effective Engine Split Cooling Circuit

2015-04-14
2015-01-1650
The drive to reduce CO2 and fuel consumption from passenger cars requires improvements from various subsystems. In particular, the ever growing importance of effective and efficient thermal management will no doubt benefit the quest for more efficient vehicle. While many established automakers have decided to increase the sophistications of the engine cooling circuits through electronics, the increase in complexity and costs are still not desirable especially for A and B passenger car segments. With this in mind, simple mechanical based cooling systems with enhanced functionalities are in high demand. To meet such demand, a simplified engine split cooling circuit previously proposed, simulated and reported seems to be promising. To further verify the indicated advantages, a prototype unit was built and physically tested using a dynamometer with motoring capability.
Technical Paper

Experimental and Theoretical Analysis of the Energy Balance in a DI Diesel Engine

2015-04-14
2015-01-1651
In recent years, the spread use of after-treatment systems together with the growing awareness about the climate change is leading to an increase in the importance of the efficiency over other criteria during the design of internal combustion engines. In this sense, it has been demonstrated that performing an energy balance is a suitable methodology to assess the potential of different injection or air management strategies, to reduce consumption as well as determining the more relevant energy terms that could be improved. In this work, an experimental energy balance with the corresponding comprehensive analysis is presented. The main objective is the identification of how the energy is split, considering internal and external balances. For this purpose, some parametric studies varying the coolant temperature, the intake air temperature and the start of the injection timing have been performed. The results quantify the effect of each parametrical study on engine efficiency.
Technical Paper

Engine-Out NOx Models for on-ECU Implementation: A Brief Overview

2015-04-14
2015-01-1638
Recently, numerous researchers and Original Equipment Manufacturers (OEMs) have developed diesel engine-out nitrogen oxides (NOx) estimation algorithms that are capable of running in real-time on production Electronic Control Units (ECUs). These are generally referred to as virtual sensors or inferential sensors. NOx estimators are typically installed to improve On-Board Diagnostics (OBD) monitors or to lower bill of material costs by replacing physical NOx sensors. This paper reviews the literature of on-ECU NOx models in order to document the state of the art and identify directions for future work. The discussion includes applications of NOx estimators, accuracy of NOx estimators, required sensor inputs, sources of error, calibration effort, and ECU resource consumption.
Technical Paper

Study on the Cooling Method of Car Engine Pistons - Part 2, Cooling Using Heat Pipes

2015-04-14
2015-01-1649
In our preceding report [1], we showed that the thermal conductivity of a heat pipe dramatically improves during high-speed reciprocation. However, this cooling method has rarely been applied to car engine pistons because the thermal conductivity of commercially available heat pipes does not increase easily even if the pipe is subjected to high-speed reciprocation. In consideration of the data from our preceding report, we decided to investigate heat pipe designs for car engine pistons, propose an optimum design, and conduct thermal analysis of the design. As a result, we found that it is possible to transport heat from the central piston head area, where cooling is most needed, to the piston skirt area, suggesting the possibility of efficient cooling.
Technical Paper

Noise, Vibrations and Combustion Investigations of Preheated Jatropha Oil in a Single Cylinder Genset Engine

2015-04-14
2015-01-1668
High viscosity of vegetable oil causes ignition problems when used in compression ignition engines. There is a need to reduce the viscosity before using it as engine fuel. Preheating and pre-treating of vegetable oils using waste heat of exhaust gases is one of the techniques, which reduces the viscosity and makes it possible to use it as alternate fuel for some niche applications, without requiring major modifications in the engine hardware. Several applications such as decentralized power generation, agricultural engines, and water pumping engines, can use vegetable oils as an alternative fuel. In present investigation, performance, combustion, and emission characteristics of an engine using preheated 20% blend of Jatropha oil with mineral diesel (J20) has been evaluated at a constant speed (1500 rpm) in a single cylinder four stroke direct injection diesel engine.
Technical Paper

Frequency-Dependent Hydraulic Engine Mount with Five-Parameters Fractional Derivative Model in Vehicle model

2015-04-14
2015-01-1670
Hydraulic Engine Mount (HEM) is widely used in vehicle Powertrain Mounting System (PMS) for vibration isolation. The dynamic performances of an HEM are strongly frequency dependent. A Five-Parameters Fractional Derivative model is used to describe the dynamic properties of an HEM. A 1/4 car model is applied to evaluate the effect of frequency-dependent dynamic stiffness which using measured data of a typical hydraulic engine mount. The excitations from engine and road are considered in the simulation. The generalized- α method is presented to solve the vehicle model with five-parameter fractional derivative model.
Technical Paper

Application of Near-field Acoustic Holography to Low Temperature Engine Start-up Noise Issue Resolution

2015-04-14
2015-01-1666
An issue of engine squealing in low temperature range (around −25°C) right after start-up emerged for a significant number of vehicles in a vehicle program. The earlier effort had focused on typical common culprits such as the pulley-belt systems etc. However, much effort, by subjective listening and guestimating hardware replacement, yielded no fruitful results for more than a year. The application of near-field acoustic holography on top of the engine in a climate chamber quickly identified several noise source locations. Further noise source identification effort on top, front and left side of the engine pinpointed the top three noise source locations: the idler pulley and water pump on front, the air compressor on right side, and the air intake throttle on top. Then a series of experiments were subsequently conducted, leading to a conclusion that the idler pulley was the source of the issue.
Technical Paper

Study on the Cooling Method of Car Engine Pistons - Part 1, Basic Test for Achieving High Heat Transfer Coefficient

2015-04-14
2015-01-1653
Car engine piston cooling is an important technology for improving the compression ratio and suppressing the deformation of pistons. It is well known that thermal conductivity improves dramatically through the use of heat pipes in computers and air conditioners. However, the heat pipes in general use have not been used for the cooling of engines because the flow of gas and liquid is disturbed by vibration and the thermal conductivity becomes excessively low. We therefore developed an original heat pipe and conducted an experiment to determine its heat transfer coefficient using a high-speed reciprocation testing apparatus. Although the test was based on a single heat pipe unit, we succeeded in improving the heat transfer coefficient during high-speed reciprocation by a factor of 1.6 compared to the heat transfer coefficient at standstill. This report describes the observed characteristics and the method of verification.
Technical Paper

Study of a Dynamic Charging System for Achievement of Unlimited Cruising Range in EV

2015-04-14
2015-01-1686
One of the greatest challenges facing the electric vehicle (EV) is its very short cruising range compared to gasoline-powered vehicles and hybrid electric vehicles (HEV). In addition to cruising range, two other major challenges faced by EVs are charging and on-road acceleration. To resolve these challenges, this paper proposes a new way of thinking about how to extend the cruising range of EVs. The goal of this research is to extend the cruising range for EVs by enabling unlimited cruising range through simultaneous energy supply and charging while running. As a result, the following benefits can be realized: Unlimited EV cruising range Zero charging time Reduced battery load (1/2 or less) More enjoyable driving thanks to a lifting of the power limitations on EVs The paper describes a prototype system that achieves unlimited travel distance, then describes the results of real-world testing of the system, and finally discusses future prospects.
Technical Paper

Electric Vehicles in the Gulf Region: Performance and Potential

2015-04-14
2015-01-1685
This paper addresses the performance and potential of using electric vehicles in the Gulf Arab states. Based on a survey executed in Salalah, Oman, a representative test driving cycle has been set up. This cycle is the first of its kind for this region, where it is driven with a vehicle provided with special measurement equipment to log important values, e.g. vehicle's speed and position, temperatures and solar irradiance. More than 40 test drives are performed to obtain a representative driver profile. The driving cycle and driver profile are used in a simulation model which is capable of simulating the energy consumption for internal combustion engine or electric motor propulsion systems. The simulation model which contains detailed models for the driver, driving cycle, vehicle components and its dynamics is validated and used to compare the consumed energy for the two different propulsion systems.
Technical Paper

Effect of Hydrogen Addition on Combustion and Emission Characteristics of High Speed Spark Ignition Engine- An Experimental Study

2015-04-14
2015-01-1684
This article experimentally characterizes the combustion and emission parameters of a single cylinder high speed SI engine operating with different concentrations of hydrogen with gasoline fuel. For this purpose, the conventional carbureted high speed SI engine was modified into an electronically controllable engine, wherein ECU was used to control the injection timings and durations of gasoline. The experiments have been conducted for different engine speeds at various throttle positions. The experimental results demonstrated that engine brake power and brake thermal efficiency increased to certain extent and then decreases with the increase of hydrogen percentage in the fuel blend. The experimental results revealed that heat release and cylinder pressure increased with addition of hydrogen fraction till 20%. It also showed the reduction in HC and CO emissions in comparison with pure gasoline. The main drawback detected was higher NOx emissions due to the high combustion temperature.
Technical Paper

Fault Diagnosis of Rolling Bearing Based on Time Waveform Analysis

2015-04-14
2015-01-1671
In this paper, a fault in rolling bearing is diagnosed using time waveform analysis. In order to verify the ability of time waveform analysis in fault diagnosis of rolling bearing, an artificial fault is introduced in vehicle gearbox bearing: an orthogonal placed groove on the inner race with the initial width of 0.6 mm approximately. The faulted bearing is a roller bearing located on the gearbox input shaft - on the clutch side. An optimal Morlet Wavelet Filter and autocorrelation enhancement are applied in this paper. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, autocorrelation enhancement is applied to the filtered signal.
Technical Paper

Understanding the Safety Effects of Vehicle Lighting Through Naturalistic Driving Data

2015-04-14
2015-01-1703
Assessing the safety impacts of vehicle forward lighting is a challenge because crash data do not always contain details necessary to ascertain the role, if any, of lighting in crashes. The present paper describes several approaches to evaluating the safety impacts of lighting using naturalistic driving data. Driving behavioral data and descriptive narratives of crashes and near-miss incidents might provide new opportunities to understand how forward lighting improves traffic safety.
Technical Paper

Ultra Low Power LED Fog Lamp with Sharp cut-off optics for Electric Vehicle

2015-04-14
2015-01-1702
This paper presents a novel technology to achieve very power (4W, 3.2W LED+0.8W driver) FOG lamp by single LED design which is much enhanced than the existing 2-3 LEDs solutions. This design saves 92.7% energy than conventional Halogen lamp (55W) and saves 38.4% than existing LED FOG lamp (6.5W). The optical design adopts the optimized multifaceted reflector, with precise and unique optimization design scheme, we are able to generate a very sharp cut-off line with a 3.2W LED to enable stronger light penetration in low vision weather condition. The efficiency of multifaceted reflector optics in this study is 50.9% which is 27% higher than the existing reflector design. Design details, anti-block skills and the manufacturing tolerance control are analyzed in this paper. The total light output of the LED fog lamp is 210lm; the L6-line minimal is 4200cd above the ECE R19 requirement of 2700cd.
Technical Paper

Comparison Amongst Emerging Markets in Regards to Headlamp Performance and the Challenges Ahead for Global Programs

2015-04-14
2015-01-1701
The challenges around global products have been lately one of the key challenges for the lighting community. This paper will present a survey which was held with costumers from China, India, Europe and Brazil understanding the difference and similarities regarding the lighting attributes. It brings also a discussion how to develop a lamp globally that fulfils everyone's needs and addresses potential trade-offs in design and performance.
Technical Paper

Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation

2015-04-14
2015-01-1687
The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S.
X