Refine Your Search

Search Results

Technical Paper

Effect of Ethanol Reforming Gas Combined with EGR on Lean Combustion Characteristics of Direct Injection Gasoline Engine

2022-03-29
2022-01-0428
Ethanol reforming gas combined with EGR technology can not only improve thermal efficiency, but also reduce pollutant emission under lean combustion condition. In this investigation, GT-Power is used to carry out one-dimensional simulation model calculation and analysis to explore the combustion characteristics, economy performance of a direct injection gasoline engine when the excess air coefficient (λ) increases from 1 to 1.3 and the ethanol reforming gas mixing ratio increases from 0% to 30% at the working condition of 2000 r/min and 10 bar. Then the EGR system is introduced to deeply discuss the working characteristics of the direct injection gasoline engine when the EGR rate increases from 0% to 20%. The results show that the increase of λ leads to the decrease of in-cylinder pressure and the delay of the peak of cylinder pressure.
Technical Paper

Increasing the Effective AKI of Fuels Using Port Water Injection (Part II)

2022-03-29
2022-01-0434
This is the second part of a study on using port water injection to quantifiably enhance the knock performance of fuels. In the United States, the metric used to quantify the anti-knock performance of fuels is Anti Knock Index (AKI), which is the average of Research Octane Number (RON) and Motor Octane Number (MON). Fuels with higher AKI are expected to have better knock mitigating properties, enabling the engine to run closer to Maximum Brake Torque (MBT) spark timing in the knock limited region. The work done in part I of the study related increased knock tolerance due to water injection to increased fuel AKI, thus establishing an ‘effective AKI’ due to water injection. This paper builds upon the work done in part I of the study by repeating a part of the test matrix with Primary Reference Fuels (PRFs), with iso-octane (PRF100) as the reference fuel and lower PRFs used to match its performance with the help of port water injection.
Technical Paper

A Three-Dimensional Flame Reconstruction Method for SI Combustion Based on Two-Dimensional Images and Geometry Model

2022-03-29
2022-01-0431
A feasible method was developed to reconstruct the three-dimensional flame surface of SI combustion based on 2D images. A double-window constant volume vessel was designed to simultaneously obtain the side and bottom images of the flame. The flame front was reconstructed based on 2D images with a slicing model, in which the flame characteristics were derived by slicing flame contour modeling and flame-piston collision area analysis. The flame irregularity and anisotropy were also analyzed. Two different principles were used to build the slicing model, the ellipse hypothesis modeling and deep learning modeling, in which the ellipse hypothesis modeling was applied to reconstruct the flame in the optical SI engine. And the reconstruction results were analyzed and discussed. The reconstruction results show that part of the wrinkled and folded structure of the flame front in SI engines can be revealed based on the bottom view image.
Technical Paper

Simulation Research on Ultra-Lean Constant-Volume Combustion Initiated by Spark-Ignited Micro-Fuel-Jet

2022-03-29
2022-01-0432
In the ultra-lean combustion mode, the combustion temperature is relatively low, which is expected to avoid the high-temperature NOx generation. And it also can use excess air to fully oxidize CO, HC and Soot, to achieve cleaner combustion. But at the same time, ultra-lean combustion has difficulties in ignition and flame propagation. This paper used CONVERGE to simulate the combustion process and products of a new ultra-lean combustion mode, which ignited the ultra-lean premixed fuel/air mixture with the spark-ignited micro-fuel-jet, in a constant-volume vessel with a 6-hole GDI injector. The differences of combustion processes and products were simulated for two spark-ignition positions, including ‘on’ the micro-jet spray and ‘between’ two micro-jet sprays. It was found that the combustion duration (the time for burned-fuel-ratio from 10% to 90%) could be shortened by about 14.3% if igniting ‘on’ the micro-jet spray, but the amount of NOx generated would increase about 21.0%.
Technical Paper

Calculation Methods Impact on Real-Driving-Emissions Particulate Number Evaluation: Moving Averaging Window in China 6 vs. Raw Mileage Averaging in Euro 6d

2022-03-29
2022-01-0567
RDE test has been introduced to the light-duty vehicle certification process in both China 6 and Euro 6d standards. The RDE test shall be performed on-road with PEMS, which is developed to complement the current laboratory certification of vehicles and ensure cars to deliver low emissions under more realistic on-road driving conditions. Particulate matter has been highly perceived as a significant contributor to human health risks and thus strictly regulated globally. For the RDE evaluation, the MAW method used by the China 6 standard is usually found less stringent than the RMA method used by the Euro 6d standard. In the present study, both of the MAW and RMA methods were applied to different driving cycles and operating conditions, which met the general RDE test requirements, yet resulted in different evaluated PN results.
Technical Paper

Identifying Factors that Affect Brake Wear PM Emissions during Real-World Test Conditions

2022-03-29
2022-01-0570
Particulate Matter (PM) is one of the world’s most problematic pollutants in terms of harm to environment and human health. It has been found out that PM emission levels are very high during traffic congestion and thus, PM is considered as the primary pollutants in city areas. Many literatures suggested that PM emitted during braking sequence from both internal combustion engines and electrified vehicles are considered high and could be the major cause of this issue. Many studies regarding to PM from brake wear were done in the pin disc laboratory setup with a brake dynamometer that might not represent real-world driving scenarios. Various studies of on road non-exhaust PM measurement were mostly focused on driving cycles. Parametric studies to identifying factors that affect brake wear during real-world driving scenarios are still needed for more investigations.
Technical Paper

Adaptation and Engine Validation of an FTIR Exhaust Gas Analysis Method for C1-Based Potential GHG-Neutral Synthetic Fuels/Gasoline-Blends Containing Dimethyl Carbonate and Methyl Formate

2022-03-29
2022-01-0569
The European Commission has released strict emission regulations for passenger cars in the past decade in order to improve air quality in cities and limit harmful emission exposure to humans. In the near future, even stricter regulations containing more realistic/demanding driving scenarios and covering more exhaust gas components are expected to be released. Passenger cars fueled with gasoline are one contributor to unhealthy air conditions, due to the fact that gasoline engines emit harmful air pollutants. One option to minimize harmful emissions would be to utilize specifically tailored, low emission synthetic fuels or fuel blends in internal combustion engines. Methyl formate and dimethyl carbonate are two promising candidates to replace or substitute gasoline, which in previous studies have proven to significantly decrease harmful pollutants.
Technical Paper

OSC Modelling of 3-Way Automotive Catalysts to Understand the Effect of Latent OSC on Dynamic OSC Performance

2022-03-29
2022-01-0574
A three-way automotive catalyst's ability to store oxygen is still a crucial performance metric for modern day catalyst applications. With more stringent emissions legalisation, the oxygen storage capacity (OSC) within a catalyst can assist with converting different harmful exhaust gases such as CO, THC and NOx under transient operating conditions. Additionally, OSC is currently the only onboard catalyst performance metric recorded during a vehicle's useful life. Catalyst performance is correlated to this OSC measurement. OSC in three-way automotive catalysts can be split into two main OSC types. "Latent" OSC deep within the washcoat and "dynamic" OSC on the surface of the catalyst washcoat. Dynamic OSC is more commonly applied in the evaluation of useful OSC of the catalyst during practical operation.
Technical Paper

On-Board Spark Plug Center Electrode Temperature Measurement with Wireless Data Transmission

2022-03-29
2022-01-0565
To increase reliability and the maintenance interval of an internal combustion engine while operating it with the lowest possible emissions, spark plug wear must be reduced. In this context, information about the spark plug center and the ground electrode temperature is key. Several measurement devices have been developed that measure the temperature of spark plug electrodes. The great challenge is to measure the temperature of the center electrode; on the one hand, the measurement device must be insulated and capable of withstanding the high voltage of the ignition system, and on the other hand, the device should not influence the ignition system. All previously studied devices presented in this paper have in common that major reconstruction of the ignition system and/or spark plugs whose design is very different from the standard engine spark plug were necessary.
Technical Paper

On-Road Emissions and Fuel Consumption Testing of Heavy-Duty Vehicles via PEMS - Comparisons of Various Performance Metrics

2022-03-29
2022-01-0571
For over a decade, the EU has required in-service conformity testing of heavy-duty road vehicles. This paper briefly discusses the practical aspects of the test requirements, how they have evolved and how they compare to other precedents, such as the heavy-duty engine dynamometer-based type approval testing procedure, as well as broadly equivalent EU requirements for light duty vehicles. Emissions requirements for heavy-duty vehicles are work-specific, but based on standard test results a range of other parameters can be calculated to yield distance-specific, tonnage-distance specific, CO2-specific and (gravimetric) fuel-specific results. At present, CO2 and fuel consumption are not subject to any limits per se during on-road testing (and this is the case for both heavy and light duty vehicles); nevertheless, the aforementioned parameters must be measured and such results can be of interest for a variety of reasons.
Technical Paper

Integrated System to Reduce Emissions from Natural Gas-Fired Reciprocating Engines — Performance Assessment of Amperometric NOx/O2 Sensors

2022-03-29
2022-01-0578
Emission reduction from Natural gas-fired reciprocating engines (NGFREs) is of high priority to regulatory agencies due to their significant contribution to overall pollutant emissions. NGFREs are well-known for their simplicity and are designed mainly to work at specific Air-to-Fuel ratios (AFRs). The AFR has been used as an effective parameter to control emissions in modern engines. However, such AFR control systems are not present in many NGFREs. To solve this challenge, a novel, cost-effective retrofit kit is proposed here that can be integrated with typical NGFREs to control AFR and improve their performance and emissions at a wide range of operating conditions. The retrofit kit comprises an air bypass mechanism combined with a control unit and amperometric sensors adapted from the automobile industry. The amperometric sensors operate in the limiting current region, which enables the measurement of a wide range of NOx/O2 concentrations.
Technical Paper

Real World Emissions from Tier 4F Off-Road Construction Equipment

2022-03-29
2022-01-0577
The primary purpose of this study was to obtain gas-phase and particular matter (PM) emissions from newer Tier 4 final off-road construction equipment using a Portable Emissions Measurement System (PEMS). This information can be used to provide accurate estimates of emissions from off-road construction equipment under real-world scenarios. Emission measurements were made for 10 pieces of Tier 4 final construction equipment including 3 excavators, 3 wheel loaders, 2 crawler tractors and 2 backhoe/loaders. The duty cycles included a pre-defined combined sequence of a cold-start phase, trenching, backfilling, travelling, and idling. For all types of equipment, the highest emissions were seen for the cold start phase, which showed NOx emissions levels ranging from 3.4 to 6.3 g/bhp-hr, from 15.8 to 26.1 g/kg-fuel and from 107 to 249 g/hour, with an average exhaust temperature around 100°C.The next highest emissions were found for the travel mode.
Technical Paper

Fuel Economy Measurement in Small Commercial Vehicles with Sub 1L BS6 Diesel Engines an Innovative Approach to Accurately Measure Fuel Economy

2022-03-29
2022-01-0575
In developing countries, the commercial vehicle industry is one of the key drivers for economic growth. The commercial vehicle industry in India is expected to reach 11,80,000 units by 2025 with a CAGR of 18% from CY 2020 to CY 2025 [1]. In the price sensitive segment of small commercial vehicles, it is imperative to incorporate accurate fuel economy measurement techniques during product development stage to deliver maximum value to the customer. In this approach, measuring the fuel consumption of small commercial vehicles in real world driving conditions in real time is one of the most critical aspects in engine calibration development and fine tuning. One of the challenges in measuring fuel consumption in sub 1 liter diesel engines is the very low fuel flow rate in the fuel feed line which keeps varying as per the driver demand.
Technical Paper

Investigations of Process and Component Parameters for the Number of Particles and Size Distribution of a Supercharged DI-SI Engine

2022-03-29
2022-01-0582
Due to the short mixture formation times in the direct injection of modern gasoline engines, there is an increase in the emission of undesirable particle emissions. It is well known that particulate mass is not very high compared to diesel engines. However, the harmful small particles are a problem, which has led to the legislator limiting the number of particle emissions. As a result of previous studies with a portable emission measurement system (PEMS) of raw cleaned exhaust gas, the particle number (PN) of the sampling point after the catalyst was higher than before the catalyst at the same process parameters and engine operating points. Based on this reproducible phenomenon, several theories were proposed.
Technical Paper

Continuous Oil Consumption Measurement Using Laser Induced Breakdown Spectroscopy

2022-03-29
2022-01-0581
This paper describes a new method for measuring oil consumption using laser induced breakdown spectroscopy (LIBS). LIBS focuses a high energy laser pulse on a sample to form a transient plasma. As the plasma cools, each element produces atomic emission lines which can be used to identify and quantify the elements present in the original sample. In this work, a LIBS system was used on simulated engine exhaust with a focus on quantifying the inorganic components (termed ash) of the particulate emissions. Because some of the metallic elements in the ash almost exclusively result from lube oil consumption, their concentrations can also be correlated to an oil consumption rate. Initial testing was performed using SwRI’s Exhaust Composition Transient Operation Laboratory®(ECTO-Lab®) burner system so that oil consumption and ash mass could be precisely controlled.
Technical Paper

RDE Plus - Rapid Characterisation of Vehicle and Powertrain Performance and Emissions using Dynamic Design of Experiments, Digital Twin and Virtual Driving Methodologies

2022-03-29
2022-01-0580
Vehicle manufacturers will need to overhaul current development methods used to guarantee emissions compliance with the introduction of more stringent emissions legislation. Climatic boundaries of temperature and altitude and in-service conformity mileage compliance will likely be extended alongside alterations to trip dynamics; this will require robust calibrations for emissions compliance. Consequently, assessing this vast array of scenarios will be impossible with physical testing of prototype vehicles and overseas climatic testing alone. To reduce reliance on physical testing for compliance, a frontloading vehicle and powertrain development programme has been established where road, chassis dynamometer, Engine-in-the-Loop (EiL) and digital twin virtual toolset methodologies are used.
Technical Paper

On the Validity of Steady-State Gasoline Engine Characterization Methodology for Generation of Optimal Calibrations Used in Real World Driving

2022-03-29
2022-01-0579
Vehicle emissions and fuel economy in real-world driving conditions are currently under considerable scrutiny. Key to achieving optimum performance for a given hardware set and control scheme is a calibration that optimizes controller gains such that inputs are scheduled over the operating space to minimize emissions and maximize fuel economy. Generating a suitable calibration requires data that is both precise and accurate, this data is used to generate models that are deployed as part of the calibration optimization process. This paper evaluates the repeatability of typical steady-state measurements used for calibration of engine controllers that will ultimately determine vehicle level emissions for homologation include Real Driving Emissions (RDE). Stabilization requirements as indicated by three different measurements are evaluated and shown to be different within the same experiment, depending on the metric used.
Journal Article

Reduction of Ammonia Emission using Deceleration Cylinder Cutoff in a Gasoline Spark Ignition Engine

2022-03-29
2022-01-0537
The newly proposed Euro 7 emission standards have added regulations limiting ammonia emissions for gasoline vehicles. This paper proposes a new emissions-control strategy to satisfy the regulated ammonia emission levels, using deceleration cylinder cut-off (DCCO) to reduce or eliminate conventional deceleration fuel cutoff (DFCO) and the associated lean-rich excursions in the three-way catalyst during oxygen saturation and desaturation. The improved air-fuel ratio management closer to stoichiometry lowers the ratio of CO to NOx and thus the ammonia (NH3) formation rate inside catalytic converter. Tests show more than 80% reduction of ammonia emission on the WLTC drive cycle without increasing other regulated emissions.
Technical Paper

An Automotive Intelligent Catalyst that Contributes to Hydrogen Safety for the Decommissioning of Fukushima Daiichi Nuclear Power Station (1FD)

2022-03-29
2022-01-0534
March 2011, the Great East Japan Earthquake and subsequent Giant Tsunami caused insufficient nuclear reactor cooling at the Fukushima Daiichi Nuclear Power Station (1F), resulting in a catastrophe of hydrogen explosion. The development of long-term safe storage technology for high-dose radioactive fuel debris collected by the decommissioning of nuclear power plants is an urgent issue. Inside the storage canister, strong radiation from fuel debris decomposes water to generate hydrogen and oxygen. The research and development have been proceeding in order to secure safety by simply placing a catalyst in the canister for oxidizing hydrogen and returning it into water. The catalyst is called a Passive Autocatalytic Recombiner (PAR), and unlike catalysts for chemical plants, it is required to have robustness that can maintain its activity for more than 30 years in an environment where temperature, humidity, gas concentration, etc. cannot be controlled.
Technical Paper

Modeling of Regeneration Dynamics in Gasoline Particulate Filters and Sensitivity Analysis of Numerical Solutions

2022-03-29
2022-01-0556
Gasoline direct-injection (GDI) engine technology improves vehicle fuel economy while decreasing CO2 emissions. The main drawback of GDI technology is the increase in particulate emissions compared to the commonly used port fuel injection technologies. Today’s adopted strategy to limit such emissions relies upon the use of aftertreatment gasoline particulate filters (GPFs). GPFs reduce particulates resulting from fuel combustion. Soot oxidation (also known as regeneration) is required at regular intervals to clean the filter, maintain a consistent soot trapping efficiency, and avoid the formation of soot plugs in the GPF channels. In this paper, starting from a multiphysics GPF model accounting for mass, momentum, and energy transport, a sensitivity analysis is carried out to choose the best mesh refinement, time step, and relative tolerance to ensure a stable numerical solution of the transport equations during regeneration while maintaining low computational time.
X