Refine Your Search

Search Results

Journal Article

Laser-Induced Phosphorescence and the Impact of Phosphor Coating Thickness on Crank-Angle Resolved Cylinder Wall Temperatures

2011-04-12
2011-01-1292
In order to further improve the energy conversion efficiency in reciprocating engines, detailed knowledge about the involved processes is required. One major loss source in internal combustion engines is heat loss through the cylinder walls. In order to increase the understanding of heat transfer processes and to validate and generate new heat transfer correlation models it is desirable, or even necessary, to have crank-angle resolved data on in-cylinder wall temperature. Laser-Induced Phosphorescence has proved to be a useful tool for surface thermometry also in such harsh environments as running engines. However, the ceramic structure of most phosphor coatings might introduce an error, due to its thermal insulation properties, when being exposed to rapidly changing temperatures. In this article the measurement technique is evaluated concerning the impact from the thickness of the phosphorescent layer on the measured temperature.
Journal Article

PIV Measurements in the Swirl-Plane of a Motored Light-Duty Diesel Engine

2011-04-12
2011-01-1285
Particle image velocimetry (PIV) is used to investigate the structure and evolution of the mean velocity field in the swirl (r-θ) plane of a motored, optically accessible diesel engine with a typical production combustion chamber geometry under motoring conditions (no fuel injection). Instantaneous velocities were measured were made at three swirl-plane heights (3 mm, 10 mm and 18 mm below the firedeck) and three swirl ratios (2.2, 3.5 and 4.5) over a range of crank angles in the compression and expansion strokes. The data allow for a direct analysis of the structures within the ensemble mean flow field, the in-cylinder swirl ratio, and the radial profile of the tangential velocity. At all three swirl ratios, the ensemble mean velocity field contains a single dominant swirl flow structure that is tilted with respect to the cylinder axis. The axis of this structure precesses about the cylinder axis in a manner that is largely insensitive to swirl ratio.
Journal Article

PLIF Measurements of Thermal Stratification in an HCCI Engine under Fired Operation

2011-04-12
2011-01-1291
Tracer-based PLIF temperature diagnostics have been used to study the distribution and evolution of naturally occurring thermal stratification (TS) in an HCCI engine under fired and motored operation. PLIF measurements, performed with two excitation wavelengths (277, 308 nm) and 3-pentanone as a tracer, allowed investigation of TS development under relevant fired conditions. Two-line PLIF measurements of temperature and composition were first performed to track the mixing of the fresh charge and hot residuals during intake and early compression strokes. Results showed that mixing occurs rapidly with no measureable mixture stratification remaining by early compression (220°CA aTDC), confirming that the residual mixing is not a leading cause of thermal stratification for low-residual (4-6%) engines with conventional valve timing.
Journal Article

Development of the Total Engine Simulation System (TESS) and Its Application for System Investigation of Future Diesel Engine

2011-04-12
2011-01-1298
Complexity of the modern diesel engine has increased to meet the stringent future emission regulations especially for NO (nitrogen oxide) and PM (particulate matter). Air management system including exhaust gas recirculation (EGR), turbocharger and variable valve actuation (VVA) must be optimized of its design and control algorithm for combustion improvement coupled with precision control of fuel injection. As a matter of course, the optimization of aftertreatment system is extremely important for the exhaust emissions reduction. In addition, improvement of fuel consumption is very important from the standpoint of response to energy security and reduction of CO₂ (carbon dioxide) emission as the greenhouse gas. However an enormous amount of energy will be required to develop such kind of the complex engine system by conventional actual testing.
Journal Article

Model Based Engine Control Development and Hardware-in-the-Loop Testing for the EcoCAR Advanced Vehicle Competition

2011-04-12
2011-01-1297
When developing a new engine control strategy, some of the important issues are cost, resource minimization, and quality improvement. This paper outlines how a model based approach was used to develop an engine control strategy for an Extended Range Electric Vehicle (EREV). The outlined approach allowed the development team to minimize the required number of experiments and to complete much of the control development and calibration before implementing the control strategy in the vehicle. It will be shown how models of different fidelity, from map-based models, to mean value models, to 1-D gas dynamics models were generated and used to develop the engine control system. The application of real time capable models for Hardware-in-the-Loop testing will also be shown.
Journal Article

Accurate and Continuous Fuel Flow Rate Measurement Prediction for Real Time Application

2011-04-12
2011-01-1303
One of the most critical challenges currently facing the diesel engine industry is how to improve fuel economy under emission regulations. Improvement in fuel economy can be achieved by precisely controlling Air/Fuel ratio and by monitoring fuel consumption in real time. Accurate and repeatable measurements of fuel rate play a critical role in successfully controlling air/fuel ratio and in monitoring fuel consumption. Volumetric and gravimetric measurements are well-known methods for measuring fuel consumption of internal combustion engines. However, these methods are not suitable for obtaining fuel flow rate data used in real-time control/measurement. In this paper, neural networks are used to solve the problem concerning discontinuous data of fuel flow rate measured by using an AVL 733 s fuel meter. The continuous parts of discontinuous fuel flow rate are used to train and validate a neural network, which can then be used to predict the discontinuous parts of the fuel flow rate.
Journal Article

Effect of Intake Oxygen Concentration on Particle Size Distribution Measurements from Diesel Low Temperature Combustion

2011-04-12
2011-01-1355
Concepts of premixed diesel Low Temperature Combustion (LTC) have been shown to be advantageous in greatly reducing engine-out nitrogen oxide (NOx) and particulate matter (PM) emissions, even below the minimum detection limit of standard opacity-based PM mass instruments. Previous research has revealed that significant changes to the PM size and number emissions still occur for changes to the LTC engine operating conditions. This work investigates the influence of reductions in intake oxygen concentration on PM (mass, size, and number), NOx, hydrocarbon (HC), and carbon monoxide (CO) emissions from select LTC engine operating conditions. Exhaust particle size distributions were measured for multiple engine operating conditions of premixed diesel LTC within a range of five intake oxygen concentrations from 9% to 13% (by volume) at three intake pressures from 1.325 to 1.6 bar.
Journal Article

Research on Emissions and Engine Lube Oil Deterioration of Diesel Engines with BioFuels (RME)

2011-04-12
2011-01-1302
In the diesel sector the fatty acid methyl esters (FAME's) - in Europe mostly RME (rapeseed methyl ester) and in US mostly SME (soja oil methyl ester) - are used as a various share, % volume blends with the diesel fuel (B5, B7, B10, B20, Bxx). The present joint project focuses on RME being the most important representative of the biofuels of 1st generation in Europe. The influences of RME blend fuels on emissions and on lube oil deterioration are emphasized. Emissions were investigated on a modern engine with exhaust gas aftertreatment devices like SCR and (DPF+ SCR). Beside the legally limited exhaust emission components some non-legislated like NO₂, N₂O, NH₃ and nanoparticles were measured at stationary and dynamic engine operation.
Journal Article

Partial Fuel Stratification to Control HCCI Heat Release Rates: Fuel Composition and Other Factors Affecting Pre-Ignition Reactions of Two-Stage Ignition Fuels

2011-04-12
2011-01-1359
Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock. This study focuses on three factors, engine speed, intake temperature, and fuel composition, that can affect the pre-ignition processes of two-stage fuels and consequently affect their performance with partial fuel stratification. A model fuel consisting of 73 vol.% isooctane and 27 vol.% of n-heptane (PRF73), which was previously compared against neat isooctane to demonstrate the superior performance of two-stage fuels over single-stage fuels with partial fuel stratification, was first used to study the effects of engine speed and intake temperature.
Journal Article

Optimizing Electric Vehicle Battery Life through Battery Thermal Management

2011-04-12
2011-01-1370
In order to define and to optimize a thermal management system for a high voltage vehicular battery, it is essential to understand the environmental factors acting on the battery and their influence on battery life. This paper defines a calendar life aging model for a battery, and applies real world environmental and operating conditions to that model. Charge and usage scenarios are combined with various cooling/heating approaches. This set of scenarios is then applied to the calendar life model, permitting optimization of battery thermal management strategies. Real-world battery life can therefore be maximized, and trade-offs for grid energy conversion efficiency and fuel economy/vehicle range can be determined.
Journal Article

VOLTEC Battery System for Electric Vehicle with Extended Range

2011-04-12
2011-01-1373
Mid 2006 a study group at General Motors developed the concept for the electric vehicle with extended range (EREV),. The electric propulsion system should receive the electrical energy from a rechargeable energy storage system (RESS) and/or an auxiliary power unit (APU) which could either be a hydrogen fuel cell or an internal combustion engine (ICE) driven generator. The study result was the Chevrolet VOLT concept car in the North American Auto Show in Detroit in 2007. The paper describes the requirements, concepts, development and the performance of the battery used as RESS for the ICE type VOLTEC propulsion system version of the Chevrolet Volt. The key requirement for the RESS is to provide energy to drive an electric vehicle with “no compromised performance” for 40 miles. Extended Range Mode allows for this experience to continue beyond 40 miles.
Journal Article

Effects of Post-Injection Strategies on Near-Injector Over-Lean Mixtures and Unburned Hydrocarbon Emission in a Heavy-Duty Optical Diesel Engine

2011-04-12
2011-01-1383
Post-injection strategies aimed at reducing engine-out emissions of unburned hydrocarbons (UHC) were investigated in an optical heavy-duty diesel engine operating at a low-load, low-temperature combustion (LTC) condition with high dilution (12.7% intake oxygen) where UHC emissions are problematic. Exhaust gas measurements showed that a carefully selected post injection reduced engine-out load-specific UHC emissions by 20% compared to operation with a single injection in the same load range. High-speed in-cylinder chemiluminescence imaging revealed that without a post injection, most of the chemiluminescence emission occurs close to the bowl wall, with no significant chemiluminescence signal within 27 mm of the injector. Previous studies have shown that over-leaning in this near-injector region after the end of injection causes the local equivalence ratio to fall below the ignitability limit.
Journal Article

A New Class of Environmental Friendly Vanadate Based NH3 SCR Catalysts Exhibiting Good Low Temperature Activity and High Temperature Stability

2011-04-12
2011-01-1331
For the removal of NOx from the oxygen-rich diesel exhaust in mobile applications the selective catalytic reduction (SCR) is one of the most favored technologies. Well established NH₃-SCR technique uses either V₂O₅/WO₃-TiO₂ or Zeolite-based catalysts, NOx being continuously reduced by NH₃ resulting in the selective formation of nitrogen and water. A major drawback of V₂O₅-based formulations is their lower thermal stability and low temperature activity, in addition, V₂O₅ release poses serious environmental and toxicity problems. In active filter regeneration performed by post-injection of fuel the temperature may increase up to 800°C resulting in drastic loss of activity (due to poor stability of V₂O₅-based formulations) as well as discharge of V₂O₅.
Journal Article

Diesel Engine Size Scaling at Medium Load without EGR

2011-04-12
2011-01-1384
Several diffusion combustion scaling models were experimentally tested in two geometrically similar single-cylinder diesel engines with a bore diameter ratio of 1.7. Assuming that the engines have the same in-cylinder thermodynamic conditions and equivalence ratio, the combustion models primarily change the fuel injection pressure and engine speed in order to attain similar performance and emissions. The models tested include an extended scaling model, which scales diffusion flame lift-off length and jet spray penetration; a simple scaling model, which only scales spray penetration at equal mean piston speed; and a same speed scaling model, which holds crankshaft rotational velocity constant while also scaling spray penetration. Successfully scaling diffusion combustion proved difficult to accomplish because of apparent differences that remained in the fuel-air mixing and heat transfer processes.
Journal Article

Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid

2011-04-12
2011-01-1335
Simulation was employed to estimate the fuel economy enhancement from the application of an exhaust heat recovery system using a thermoelectric generator (TEG) in a series hybrid. The properties of the thermoelectric elements were obtained by self-assessment and set as the conditions for estimating the fuel economy. It was concluded that applying exhaust system insulation and forming the appropriate combination of elements with differing temperature properties inside the TEG could yield an enhancement of about 3% in fuel economy. An actual vehicle was also used to verify the calculation elements in the fuel economy simulation, and their reliability was confirmed.
Journal Article

Variable and Fixed Airflow for Vehicle Cooling

2011-04-12
2011-01-1340
This paper describes rationale for determining the apportionment of variable or ‘shuttered’ airflow and non-variable or static airflow through openings in the front of a vehicle as needed for vehicle cooling. Variable airflow can be achieved by means of a shutter system, which throttles airflow through the front end and into the Condenser, Radiator, and Fan Module, (CRFM). Shutters originated early in the history of the auto industry and acted as a thermostat [1]. They controlled airflow as opposed to coolant flow through the radiator. Two benefits that are realized today are aerodynamic and thermal gains, achieved by restricting unneeded cooling airflow. Other benefits exist and justify the use of shutters; however, there are also difficulties in both execution and practical use. This paper will focus on optimizing system performance and execution in terms of the two benefits of reduced aerodynamic drag and reduced mechanical drag through thermal control.
Journal Article

Thermal Management System for Electric Vehicles

2011-04-12
2011-01-1336
The thermal management system for electric vehicles is developed. Called the Thermal Link System, it consists of a heat-pump air conditioner, a system recovering waste heat from the electric power train, and a heat exchanger between the air-conditioner refrigerant and the power-train coolant water. The recovered heat is used for interior heating, so the amount of power consumed by the heat-pump air conditioner can be reduced. In this system the refrigerant for the heat-pump air conditioner and the coolant water for electric power trains are thermally linked by the heat exchanger, which can reduce the temperature of the coolant water to less than that of the surrounding air. This enhanced cooling function increases the power of electric power trains, or extends the amount of time at full power operation. Here we describe the Thermal Link System's mechanism and effects on energy efficiency.
Journal Article

Low-Cost FC Stack Concept with Increased Power Density and Simplified Configuration Utilizing an Advanced MEA

2011-04-12
2011-01-1344
In 2006, Nissan began limited leasing of the X-TRAIL FCV equipped with their in-house developed Fuel Cell (FC) stack. Since then, the FC stack has been improved in cost, size, durability and cold start-up capability with the aim of promoting full-scale commercialization of FCVs. However, reduction of cost and size has remained a significant challenge because limited mass transport through the membrane electrode assembly (MEA) has made it difficult to increase the rated current density of the FC. Furthermore, it has been difficult to reduce the variety of FC stack components due to the complex stack configuration. In this study, improvements have been achieved mainly by adopting an advanced MEA to overcome these difficulties. First, the adoption of a new MEA and separators has improved mass transport through the MEA for increased rated current density. Second, an integrated molded frame (IMF) has been adopted as the MEA support.
Journal Article

Development of Electric Power Control using the Capacitance Characteristics of the Fuel Cell

2011-04-12
2011-01-1346
Cold weather operation has been a major issue for fuel cell vehicles (FCV). In order to counteract this effect on FCV operation, an approach for rapid warm-up operation based on : concentration overvoltage increase and conversion efficiency decrease by limiting oxygen or hydrogen supply, was adopted in a running fuel cell hybrid vehicle. In order to adjust the output power response of the fuel cell to the target power of the vehicle, -the inherent capacitance characteristics of the fuel cell were measured- based on the oxidation-reduction reaction and an electric double-layer capacitor, and an equivalent electric circuit model of a fuel cell with the capacitance was constructed. This equivalent electric circuit model was used to develop a power control algorithm to manage absorption of the surplus power, or deviation, to the capacitance.
Journal Article

The Fuel Efficiency Improvement through a Six Speed Manual Transmission Application in Passengers Vehicles with Low Displacement Engines

2011-04-12
2011-01-1430
The objective of this paper is to share the benefits regarding a study of fuel economy improvements involving Powertrain technologies. In this case our research was concentrated in vehicles transmissions initiatives like a Six Speed Manual Transmission application in Passengers Vehicles with low displacement engines. During the last 10 years the fuel economy challenges has presented a significant growth mainly due to two simple factors. First of all the fuel price which is the main driver to keep this technological continuous improvement. This fact has a direct influence in customers satisfaction, so all car makers concentrate huge efforts to provide intelligent solutions in order to increase competitiveness, as for example, the flex fuel engines (Figure 1). In parallel, the “green” appeal raises everyday stronger. Therefore the air pollution caused by vehicles gas emissions reinforces this commitment.
X