Refine Your Search

Search Results

Journal Article

Road Characterization for the Simulation of Automotive Vehicle Dynamics

2011-04-12
2011-01-0185
The major actions that move a highway vehicle are the forces and moments generated between the tire and ground; hence, the validity of a simulated vehicle test depends on the quality of both the tire model and the characterization of the ground surface. Other actions come from aerodynamic forces and moments that are affected by the relation of the vehicle body to the ground surface. This paper describes how the ground can be characterized to cover features of interest for most vehicle simulation scenarios involving pavements or other rigid surfaces. The 3D surface is built from tabular data related to specified properties of a road surface such as horizontal geometry, design elevation changes related to curves and drainage (i.e., banking of turns, cross-slope, ditches, etc.), elevation changes due to hills and other major grades, and disturbances and unique features such as bumps and holes. Broadband random-type road roughness is also included.
Journal Article

An Expeditious High Fidelity ABAQUS-Based Surrogate Tire Model for Full Vehicle Durability Analysis in ADAMS

2011-04-12
2011-01-0187
This paper discusses an approach to construct a high fidelity surrogate tire model using a two-phase optimization-based algorithm that draws on data generated by off-line nonlinear ABAQUS tire simulations. It subsequently describes the process of Simulink-based interfacing of the resulting surrogate model to a full ADAMS vehicle model to enable accurate and expeditious durability studies. The two-phase surrogate model construction relies on an identification method that draws on the Instantaneous Center Manifold (ICM) theory. In the proposed method, a generally forced non-autonomous nonlinear structural system is represented as a sequence of harmonically excited autonomous nonlinear systems. The close-form solution of each of these systems is produced using the ICM theory. The first phase of the surrogate model construction uses an optimal Orthogonal Matching Pursuit (OMP) algorithm to unify all ICMs used to approximate the reaction force of the tire at its spindle.
Journal Article

A Direct Yaw Control Algorithm for On- and Off-Road Yaw Stability

2011-04-12
2011-01-0183
Models for off-road vehicles, such as farm equipment and military vehicles, require an off-road tire model in order to properly understand their dynamic behavior on off-road driving surfaces. Extensive literature can be found for on-road tire modeling, but not much can be found for off-road tire modeling. This paper presents an off-road tire model that was developed for use in vehicle handling studies. An on-road, dry asphalt tire model was first developed by performing rolling road force and moment testing. Off-road testing was then performed on dirt and gravel driving surfaces to develop scaling factors that explain how the lateral force behavior of the tire will scale from an on-road to an off-road situation. The tire models were used in vehicle simulation software to simulate vehicle behavior on various driving surfaces. The simulated vehicle response was compared to actual maximum speed before sliding vs. turning radius data for the studied vehicle to assess the tire model.
Journal Article

The New Audi A6/A7 Family - Aerodynamic Development of Different Body Types on One Platform

2011-04-12
2011-01-0175
The paper describes the aerodynamic development and optimization process of the three different new models of the Audi A6/A7 family. The body types of these three models represent the three classic aerodynamic body types squareback, notchback and fastback. A short introduction of the flow structures of these different body types is given and their effect on the vehicle aerodynamic is described. In order to achieve good aerodynamic performance, the integration into the development process of the knowledge about these flow phenomena and the breakdown of the aerodynamic resistance into its components friction- and pressure drag as well as the induced drag is very important. The paper illustrates how this is realized within the aerodynamic development process at Audi. It describes how the results of CFD simulations are combined with wind tunnel measurements and how the information about the different flow phenomena were used to achieve an aerodynamic improvement.
Journal Article

The Decay of Bluff Body Wakes

2011-04-12
2011-01-0178
Vehicles on the road operate in the turbulent flow field resulting from the combined effects of the natural wind and the wakes of other vehicles. While substantial data exists on the properties of the natural wind, much less information is available for the wake properties of road vehicles. The wake information available for road vehicle shapes is mainly restricted to the near wake region, but to understand the vehicle operating environment it is the wake downstream of this region which is of interest. To determine the range of this area of interest requires some knowledge of the decay of the wake properties. From wind tunnel studies using small simple bluff bodies in free stream and in ground proximity the principle wake properties, velocity deficit and peak turbulence intensity have been measured. The maximum velocity deficit is shown to approximately decay with x-2/3, where x is the distance downstream, while turbulence intensity decays at a slightly slower rate.
Journal Article

Simulation of Rear Glass and Body Side Vehicle Soiling by Road Sprays

2011-04-12
2011-01-0173
Numerical simulation of aerodynamics for vehicle development is used to meet a wide range of performance targets, including aerodynamic drag for fuel efficiency, cooling flow rates, and aerodynamic lift for vehicle handling. The aerodynamic flow field can also be used to compute the advection of small particles such as water droplets, dust, dirt, sand, etc., released into the flow domain, including the effects of mass, gravity, and the forces acting on the particles by the airflow. Previous efforts in this topic have considered the water sprays ejected by rotating wheels when driving on a wet road. The road spray carries dirt particles and can obscure the side and rear glazing. In this study, road sprays are considered in which the effects of additional water droplets resulting from splashing and dripping of particles from the wheel house and rear under body are added to help understand the patterns of dirt film accumulation on the side glass and rear glass.
Journal Article

Cross Winds and Transients: Reality, Simulation and Effects

2011-04-12
2011-01-0172
This paper provides a published counterpart to the address of the same title at the 2010 SAE World Congress. A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, due to the unsteady wakes of other vehicles and as a result of traversing through the stationary wakes of road side obstacles. This last term is of greatest significance. Various works related to the characterization, simulation and effects of on-road turbulence are compared together on the turbulence spectrum to highlight differences and similarities. The different works involve different geometries and different approaches to simulating cross wind transients but together these works provide guidance on the most important aspects of the unsteadiness. On-road transients include a range of length scales spanning several orders of magnitude but the most important scales are in the in the 2-20 vehicle length range.
Journal Article

Setting Up a Measuring Device to Determine the Friction of the Piston Assembly

2011-04-12
2011-01-0227
This SAE Technical Paper gives a summary of the essential findings in the development and operation of a test engine dedicated to the measuring of the friction between the piston group and the liner. Firstly the fundamental demands on the high-precision and close to real engine operation friction measuring are laid out. Subsequently the basic engine, the measuring system based on the floating liner method including a gas balance device, as well as the implemented measuring technique are specified. Major influencing variables on the friction of the piston assembly and its interference variables are also summarized. Extensive information about the systematic and strategies for the test engine's operation startup are given in acknowledgement of influencing and interference variables. This strategy reduces the developmental and startup process of an engine dedicated to the measuring of piston group friction.
Journal Article

Finite Element Analysis of Piezoelectric Composite Actuators

2011-04-12
2011-01-0218
Piezoelectric materials are smart materials that can undergo mechanical deformation when electrically or thermally activated. An electric voltage is generated on the surfaces when a piezoelectric material is subjected to a mechanical stress. This is referred to as the ‘direct effect’ and finds application as sensors. The external geometric form of this material changes when it is subjected to an applied voltage, known as ‘converse effect’ and has been employed in the actuator technology. Such piezoelectric actuators generate enormous forces and make highly precise movements that are extremely rapid, usually in the micrometer range. The current work is focused towards the realization and hence application of the actuator technology based on piezoelectric actuation. Finite element simulations are performed on different types of piezoelectric actuations to understand the working principle of various actuators.
Journal Article

Bearing Surface Requirements (Waviness) for Driveline Shafts

2011-04-12
2011-01-0228
This paper summarizes the Fast Fourier Transform (FFT) methodology, special equipment, set-up and testing that is recommended to properly characterize the surface of bearing journals that will not result in objectionable noise or vibration. Traditional surface profiles and finish callouts do not capture some of the key characteristics for addressing what is often the customer's greatest complaint, noise. Noise can vary based on the sensitivity of the vehicle but understanding how to accurately describe (design, test, and measure) a surface for a given vehicle can result in an optimized design and reduce process time during manufacturing. Furthermore, this paper will recommend techniques for determining the proper limits of the FFT callouts.
Journal Article

New Adhesive Bonding Surface Treatment Technologies for Lightweight Aluminum-Polypropylene Hybrid Joints in Semi-Structural Applications

2011-04-12
2011-01-0217
Atmospheric pressure plasma sources are new devices for modifying the surface condition of engineering materials such as thermoplastic and thermoset-based composites. Because they operate at ambient conditions, these plasma systems can be used on a production line as a pre-treatment solution prior to painting or adhesive bonding to significantly improve adhesion strength. However, their efficient use requires sound understanding on how they modify the surface state of materials and, by the same token, how these modifications can be detected and quantified as regards their ability to provide high-strength adhesive joints. Polypropylene, since it is one of the most difficult-to-bond thermoplastic polymers and, at the same time, one of the most interesting polymers for the automotive industry (due to low cost, widespread use in the formulation of composites, lightweight and recyclability), was used in this paper as a model polymer.
Journal Article

The Effect of Welding Dimensional Variability on the Fatigue Life of Gas Metal Arc Welded Joints

2011-04-12
2011-01-0196
Gas Metal Arc Welding (GMAW) is widely employed for joining relatively thick sheet steels in automotive body-in-white structures and frames. The GMAW process is very flexible for various joint geometries and has relatively high welding speed. However, fatigue failures can occur at welded joints subjected to various types of loads. Thus, vehicle design engineers need to understand the fatigue characteristics of welded joints produced by GMAW. Currently, automotive structures employ various advanced high strength steels (AHSS) such as dual-phase (DP) and transformation-induced plasticity (TRIP) steels to produce lighter vehicle structures with improved safety performance and fuel economy, and reduced harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using GMAW in current body-in-white structures and frames.
Journal Article

Combustion Behavior of Leaking Hydrogen and Effects of Ceiling Variations

2011-04-12
2011-01-0254
Hydrogen concentration during combustion in a confined space with a ceiling was investigated. The results indicated that steady-state hydrogen concentration was highest at the ceiling surface for all hydrogen flow rates. When hydrogen concentration was 10-20%, weak flame propagation occurred at the ceiling surface, with the most easily burnable spots being dented areas such as seams, pores and creases on the ceiling surface. The unstable and limited nature of flame propagation at the ceiling surface was attributed to the relationship between temperature and hydrogen concentration in a confined space.
Journal Article

Fatigue Behavior and Life Prediction for Aluminum Castings in the Absence of Casting Flaws

2011-04-12
2011-01-0193
Cast aluminum alloys are increasingly used in cyclically loaded automotive structural applications for light weight and fuel economy. The fatigue resistance of aluminum castings strongly depends upon the presence of casting flaws and characteristics of microstructural constituents. The existence of casting flaws significantly reduces fatigue crack initiation life. In the absence of casting flaws, however, crack initiation occurs at the fatigue-sensitive microstructural constituents. Cracking and debonding of large silicon (Si) and Fe-rich intermetallic particles and crystallographic shearing from persistent slip bands in the aluminum matrix play an important role in crack initiation. This paper presents fatigue life models for aluminum castings free of casting flaws, which complement the fatigue life models for aluminum castings containing casting flaws published in [1].
Journal Article

Fuzzy Logic Approach to Vehicle Stability Control of Oversteer

2011-04-12
2011-01-0268
Traditional Electronic Stability Control (ESC) for automobiles is usually accomplished through the use of estimated vehicle dynamics from simplified models that rely on parameters such as cornering stiffness that can change with the vehicle state and time. This paper proposes a different method for electronic stability control of oversteer by predicting the degree of instability in a vehicle. The algorithm is solely based on measurable response characteristics including lateral acceleration, yaw rate, speed, and driver steering input. These signals are appropriately conditioned and evaluated with fuzzy logic to determine the degree of instability present. When the “degree of instability” passes a certain threshold, the appropriate control action is applied to the vehicle in the form of differential yaw braking. Using only the measured response of the vehicle alleviates the problem of degraded performance when vehicle parameters change.
Journal Article

A Bayesian Approach to Cross-Validation in Pedestrian Accident Reconstruction

2011-04-12
2011-01-0290
In statistical modeling, cross-validation refers to the practice of fitting a model with part of the available data, and then using predictions of the unused data to test and improve the fitted model. In accident reconstruction, cross-validation is possible when two different measurements can be used to estimate the same accident feature, such as when measured skidmark length and pedestrian throw distance each provide an estimate of impact speed. In this case a Bayesian cross-validation can be carried out by (1) using one measurement and Bayes theorem to compute a posterior distribution for the impact speed, (2) using this posterior distribution to compute a predictive distribution for the second measurement, and then (3) comparing the actual second measurement to this predictive distribution. An actual measurement falling in an extreme tail of the predictive distribution suggests a weakness in the assumptions governing the reconstruction.
Journal Article

Investigation of Rear Occupant Head Restraint Interaction in High-Severity Rear Impact using BioRID and HIII

2011-04-12
2011-01-0273
The rear seat occupant has been the subject of an increasing number of research efforts in recent years. However, the majority of the research has focused on frontal impact, while there are also a number of studies concerned with low to moderate delta-V rear impact. Very limited work exists regarding the fate of the rear seat occupant involved in high-severity rear impact, especially when utilizing the BioRID anthropomorphic test device (ATD). Furthermore, it is evident that the out of position rear occupant, as defined by leaning forward prior to rear impact, is also of relevance to this line of research. The objective of this study is to explore and compare the response of BioRID and 50 th percentile Hybrid III in conjunction with the effects of head restraint geometry and the occupant seating configuration (normal seating versus forward leaning) in high-severity rear impact tests.
Journal Article

Timber Utility Pole Fracture Mechanics Due to Non-Deformable and Deformable Moving Barrier Impacts

2011-04-12
2011-01-0288
The energy dissipated by the fracture of wooden utility poles during vehicle impacts is not currently well documented, is dependent upon non-homogenous timber characteristics, and can therefore be difficult to quantify. While there is significant literature regarding the static and quasi-static properties of wood as a building material, there is a narrow body of literature regarding the viscoelastic properties of timber used for utility poles. Although some theoretical and small-scale testing research has been published, full-scale testing has not been conducted for the purpose of studying the vehicle-pole interaction during impacts. The parameters that define the severity of the impact include the acceleration profile, vehicle velocity change, and energy dissipation. Seven full-scale crash tests were conducted at Exponent's Arizona test facility utilizing both moving deformable and non-deformable barriers into new wooden utility poles.
Journal Article

Measurement of r-values of High Strength Steels Using Digital Image Correlation

2011-04-12
2011-01-0234
The r-value is a very important parameter in the forming simulations of high strength steels, especially for steels with prominent anisotropy. R-values for sheet steels conventionally measured by extensometers were found neither consistent nor accurate due to difficulties in measuring the width strain. In this study, the Digital Image Correlation (DIC) technique was applied to determine r-values in Longitudinal (L), Transverse (T) and Diagonal (D) directions for cold rolled DP980 GI, DP780 GI, DP600 GI and BH250 GI sheet steels. The r-values measured from DIC were validated by finite element analysis (FEA) of a uniaxial tensile test for BH250. The simulation results of the load-displacement for two plasticity models were compared to experimental data, with one being the isotropic yield (von-Mises) and the other being an anisotropic model (Hill-48) using the r-value measured from DIC.
Journal Article

Effect of Tool Coatings and Tool Steels on Formability of Advanced High Strength Steels

2011-04-12
2011-01-0232
To improve the formability of advanced high strength steels, the interaction between steel sheet, tool material and tool coating was investigated. Square cup drawing experiments were conducted to determine the range of binder forces for forming good cups without wrinkling or splitting. Binder Span of Control (BSC) tests were conducted for DP590, TRIP590, DP780, DP780 EG and DP980 using three uncoated tool steels and two coatings on a standard tool steel substrate. The experimental results indicate that the binder span for forming good cups is sensitive to the choice of tool material and tool coating and the effect of lubricant on formability also varies with tooling material and coating. The obtained binder spans were compared and the best coating plus tool steel combinations for steels of different grades were identified. In addition, roughness of the tooling surface was measured before and after stamping.
X