Refine Your Search

Search Results

Technical Paper

Real Road Transient Driving Cycle Simulations in Engine TestBed for Fuel Economy Prediction

2014-10-13
2014-01-2716
The present work describes an approach to predict the vehicle fuel economy by simulating its engine drive cycle on a transient engine dynamometer in an engine testbed. The driving cycles investigated in the current study were generated from the typical experimental data measured on different vehicles ranging from Intermediate Commercial Vehicle (ICV) to Heavy-duty Commercial Vehicle (HCV) in real-world traffic conditions include various cities, highways and village roads in India. Reliability and robustness of the method was studied on various engines with cubic capacity from 3.8 liters to 8 liters using different drive cycles, and the results were discussed. Later, using same measured drive cycles, vehicle fuel economy was predicted by a vehicle simulation tool (AVL CRUISE) and results were compared with experimental data. In addition, engine coolant temperature effect on fuel economy was investigated.
Technical Paper

Numerical Analysis of Cooling Effects of a Cylinders in Aircraft SI Engine

2014-10-13
2014-01-2883
This paper focuses on the issues concerning gyroplane powertrain cooling. The Rotax 912S engine was selected as a propulsion system following a detailed analysis. A one-dimensional model, simulated with the AVL Boost software, was applied to determine the heat balance of the engine and the heat flux penetrating through each of engine's surfaces. The geometrical quantities defined in the model were obtained by measuring a three-dimensional geometry provided by an authorized Rotax engine supplier company. Calculation results were then verified by comparing the obtained values with data available from the Rotax 912S engine and with the values of individual parameters given in the literature.
Technical Paper

On the Mechanical Efficiency Assessment of Epicyclic Gear Trains: Analytic Formulas and an Easy Algorithm

2014-10-13
2014-01-2888
The present paper aims at developing and implementing a systematic and simple algorithm for calculating the mechanical efficiency of the epicyclic gear trains operating as differential mechanism or speed reducer/multiplier. In this analysis, we consider the mechanical efficiency of the epicyclic gear train as a function of the configuration, speed in its three input / output shafts, and also with respect to the power-flow type. Results are compared to those obtained from other methods, available in the literature.
Technical Paper

Oil Pump Performance Optimization for Three Cylinder Diesel Engine through Friction Reduction

2014-10-13
2014-01-2881
Fuel Economy & CO2 Reduction in IC Engines is the key driving factor for the Product performance & Customer satisfaction all around the world. The Stringent CO2 Limits calls for Engine Friction Reduction, Engine Downsizing & other Alternative measures. The challenges were to measure the component level Friction Contribution on the Engine & to select the critical contribution parameter & to optimize the same. Oil pump is one such important engine parasitic load which takes up engine power through crankshaft to deliver oil flow rate according to engine demand. The proper functioning of the Oil pump is considered with required engine Oil pressure along with optimum power consumption over various operating speed and temperature. Hence the various Oil pump critical design metrics are reviewed for two cylinder Multi-jet diesel engine to have optimal power consumption and without reduction the Oil pressure at the engine oil gallery.
Technical Paper

Evaluation and Comparative Study of ValveTrain Layouts with Different Rocker Ratio

2014-10-13
2014-01-2877
The Valve Train system is an integral part of any engine and the impact of its design is very crucial, particularly in high speed engines. Maintaining the required valve timing throught the engine operating speed and longer component life are the two important parameters which drive current valvetrain designs. An engine ValveTrain system designed for a valve lift of 7mm is to be modified for an increased valve lift of 8mm. A study was conducted to understand which design parameters are to be changed /modified to make this possible. For this study, the valvetrain of an air-cooled motorcycle engine is taken up. The valvetrain arrangement was an Over Head Camshaft (OHC) design with a Roller-Follower. A 1D commercially available numerical code was used to simulate the kinematics and dynamics of the system.
Technical Paper

Control Research of Power Train Torsional Vibration Based on Magneto-Rheological Fluid Dual Mass Flywheel

2014-10-13
2014-01-2867
To research the torsional vibration damping characteristic of magneto-rheological fluid dual mass flywheel (MRF-DMF) and the control system in power train, the multi-degree power train torsional vibration model which contains MRF-DMF and semi-active fuzzy control model are built, then the damping characteristic of MRF-DMF in several conditions are gained and compared with MRF-DMF when no control system. The result indicates: the damping characteristic of MRF-DMF effect on power train when using control is better than without control in idle, speed up, slow down, ignition and stalling, while the damping characteristic is less obvious in constant speed because the simulation condition and damping moment relatively stable.
Technical Paper

Dynamic Characteristics and Parameters Analysis of Magneto-rheological Fluid Dual Mass Flywheel

2014-10-13
2014-01-2866
In order to improve structure and performance of magneto-rheological dual mass flywheel (MRF-DMF), some parameters effects on dynamic characteristics are acquired by parameters analysis. The dynamic stiffness and loss angle in different current and different frequency are gained through dynamic characteristic test. The fluid-structure interaction finite element model of MRF-DMF is built and the accuracy is verified by comparison between test and simulation. Based on the model, the parameters analysis is done and the law of MRF viscosity, arc spring stiffness, working clearance, rotor radius and axial width effect on dynamic characteristics are gained, it will prove some guidance for the structure and performance improvement.
Technical Paper

Crankshaft Impact Noise and Three-Dimensional Vibration

2014-10-13
2014-01-2863
This paper describes the characteristics and mechanism of crankshaft impact noise that radiates from the cylinder body at full load medium engine speeds, based on the mechanism for axial vibration of crankshaft coupled with torsional vibration of crankshaft.
Technical Paper

High Performance Engine Mounts to Suit Various Environment for Automotive Application

2014-10-13
2014-01-2865
Success of the vehicle in cold countries depends on performance of the vehicle under cold climatic conditions. In automobiles, structural elastomer components have strong influence on vehicle performance including NVH, ride comfort & durability. Elastomers are sensitive in nature to these climatic conditions due to its temperature dependent visco-elastic behavior. Thus, it is very important to understand structural elastomer component's performance at sub zero temperatures. In a vehicle, Engine mount is used to hold engine firmly and isolate vibrations away from chassis. Vibration isolation of a mount at low temperature is generally affected by the rubber composition. Major ingredients of the rubber composition influencing the low temperature characteristics are Elastomer type, filler type, plasticizer and curing system. Rubber composition plays key role in achieving engine mount properties like static stiffness, dynamic stiffness, permanent set and durability.
Technical Paper

Turbine Housing Boss Design in Turbocharger Application

2014-10-13
2014-01-2849
Turbochargers are widely used to boost internal combustion engines for both on and off high way applications to meet emission and performance requirements. Due to the high operating temperature, turbochargers are subjected to hostile environment. Low vibration level is one of the key requirements while designing turbo for every application. An engine bracket is employed to support turbine housing to reduce total vibration level. Turbine housing in the turbocharger is commonly equipped with boss to accommodate the engine bracket supporting which eventually includes additional constraints in the turbocharger system. Additional constraints in the turbine housing can lead to adverse impact in the Thermo-Mechanical Fatigue (TMF) life of the housing component. Boss generally has critical influence to thermal stress distribution of the turbine housing.
Technical Paper

Developing Low Gasoline Particulate Emission Engines Through Improved Fuel Delivery

2014-10-13
2014-01-2843
Particulate emissions are of growing concern due to health impacts. Many urban areas around the world currently have particulate matter levels exceeding the World Health Organisation safe limits. Gasoline engines, especially when equipped with direct injection systems, contribute to this pollution. In recognition of this fact European limits on particulate mass and number are being introduced. A number of ways to meet these new stringent limits have been under investigation. The focus of this paper is on particulate emissions reduction through improvements in fuel delivery. This investigation is part of the author's ongoing particulate research and development that includes optical engine spray and combustion visualisation, CFD method development, engine and vehicle testing with the aim to move particulate emission development upstream in the development process.
Technical Paper

Particulate Mass Reduction and Clean-up of DISI Injector Deposits via Novel Fuels Additive Technology

2014-10-13
2014-01-2847
Particulate mass (PM) emissions from DISI engines can be reduced via fuels additive technology that facilitates injector deposit clean-up. A significant drawback of DISI engines is that they can have higher particulate matter emissions than PFI gasoline engines. Soot formation in general is dependent on the air-fuel ratio, combustion chamber temperature and the chemical structure and thermo-physical properties of the fuel. In this regard, PM emissions and DISI injector deposit clean-up were studied in three identical high sales-volume vehicles. The tests compared the effects of a fuel (Fuel A) containing a market generic additive at lowest additive concentration (LAC) against a fuel formulated with a novel additive technology (Fuel B). The fuels compared had an anti-knock index value of 87 containing up to 10% ethanol. The vehicles were run on Fuel A for 20,000 miles followed by 5,000 miles on Fuel B using a chassis dynamometer.
Technical Paper

Effects of Combustion Parameters and Lubricating Oil on Particulate Matter Emissions from a Turbo-Charged GDI Engine Fueled with Methanol/Gasoline Blends

2014-10-13
2014-01-2841
The aim of this research is to experimentally investigate the effects of combustion parameters [ignition timings, injection timings, excess air ratio (λ)] and lubricating oil on particulate matter (PM) emissions from a 2.0 L turbo-charged gasoline direct injection (T-GDI) engine fueled with gasoline (octane number = 97), methanol/gasoline blends and pure methanol. The results of this paper show that the PM number concentration mostly presents a typical bimodal distribution in figures. The particle number concentration mainly concentrates in the nucleation mode. With the increase of methanol volume fraction in the blended fuel, the PM emissions decrease significantly. Furthermore, there are few particles when the engine fueled with pure methanol. As advancing ignition timing, the total PM number rises by over about 200%. Under the pre-ignition condition, the higher in-cylinder temperature may also accelerate the formation of the nucleation mode particles.
Technical Paper

Exhaust Gas Emissions from Heavy-Duty Engines and Passenger Cars with Different After-Treatment Systems Running on Hydrotreated Vegetable Oil (HVO)

2014-10-13
2014-01-2827
One political and economic aim in Europe is to increase the use of renewable energy resources. In the transport sector, up to 10 % of fossil diesel fuel should be replaced by biogenic fuels by 2020. This also means a reduction in crude oil dependency. In the area of diesel fuel, fatty acid methyl esters are introduced since over 20 years as biodiesel. However, biodiesel can lead to an increase of engine oil dilution in passenger cars with diesel particulate filters. During the regeneration of the particulate filters, there is an entry of fuel components in the engine oil. While most of the diesel fuel (DF) evaporates from the engine oil, biodiesel remains in the oil and can cause sludge formation in the engine. A promising approach to reduce this problem is the use of a new type of biogenic fuel, called hydrotreated vegetable oil (HVO). This is also produced from vegetable oil or animal fat. Like biodiesel, HVO is free of sulfur and any aromatics.
Technical Paper

Regulated Emissions, Unregulated Emissions and Fuel Consumption of Two Vehicles Tested on Various Petrol-Ethanol Blends

2014-10-13
2014-01-2824
Ethanol has a long history as an automotive fuel and is currently used in various blends and formats as a fuel for spark ignition engines in many areas of the world. The addition of ethanol to petrol has been shown to reduce certain types of emissions, but increase others. This paper presents the results of a detailed experimental program carried out under standard laboratory conditions to determine the influence of different quantities of petrol-ethanol blends (E5, E10, E25, E50 and E85) on the emission of regulated and unregulated gaseous pollutants and particulate matter. The ethanol-petrol blends were laboratory tested in two European passenger cars on a chassis dynamometer over the New European Driving Cycle, using a constant volume sampler and analyzers for quantification of both regulated and unregulated emissions.
Technical Paper

Evaluation of Real- World Emissions from Heavy-Duty Diesel Vehicle Fueled with FAME, HVO and BTL using PEMS

2014-10-13
2014-01-2823
Widespread use of biofuels for automobiles would greatly reduce CO2 emissions and increase resource recycling, contributing to global environmental conservation. In fact, activities for expanding the production and utilization of biofuels are already proceeding throughout the world. For diesel vehicles, generally, fatty acid methyl ester (FAME) made from vegetable oils is used as a biodiesel. In recent years, hydrotreated vegetable oil (HVO) has also become increasingly popular. In addition, biomass to liquid (BTL) fuel, which can be made from any kinds of biomass by gasification and Fischer-Tropsch process, is expected to be commercialized in the future. On the other hand, emission regulations in each country have been tightened year by year. In accordance with this, diesel engines have complied with the regulations with advanced technologies such as common-rail fuel injection system, high pressure turbocharger, EGR and aftertreatment system.
Technical Paper

Effect of Crystallographic Texture on Formability of Some FCC Metals and Alloys

2014-04-28
2014-28-0033
Formability of metals and alloys in general and aluminium alloys and steels in particular is of paramount importance in sheet metal forming in automobile industry. It is well understood that the evolution of preferred crystallographic orientation of crystallites or texture during prior thermo-mechanical processing of sheets plays an important role in determining formability. The formability of sheet is measured in terms of the Lankford parameter or the plastic strain ratio which is defined as the ratio of strain in width direction to that in the thickness direction (R = εw/εt). The variation of Lankford parameter with the rolling direction and standard and ΔR value is widely used in industry as a standard for estimating the formability of the rolled sheets.
Technical Paper

Experimental and Numerical Analysis on Influence of Embedded Optical Fibre on Advanced Composites of Structural Health Monitoring of Passenger Car

2014-04-28
2014-28-0011
The influence of embedded optical fibre on the strength and stiffness of flexurally loaded composite laminate is studied in this paper. In a given structure, different loads create a complex state of stresses in the structure. In-situ structural health monitoring of composite structures could be achieved by using embedded optical fiber as sensors. Modern OFS (Optical Fibre Sensors) are suitable for the measurement of temperature, pressure, strain, angular rotation, speed, acceleration, curvature, flow, refractive index, and many other parameters. The strength and fracture behaviour of the structure could be significantly affected by improper alignment and placement of optical fibres in the laminate. The utilization of embedded optical fibres for damage detection is accurate and reliable if the interaction between the optical fibre and the delamination is known.
Technical Paper

Utilization of Knowledge Based Utilities for Streamlining the Characterization Procedure of Acoustic Material Properties

2014-04-28
2014-28-0034
Designers and analysts need to compare and conduct synthesis for selection of materials based on their properties involving simulation, optimization and correlation with test data. An example is that of acoustic material properties such as random and normal incidence sound absorption coefficient and sound transmission loss. The international test standards necessitate having standard operating procedures for characterization of these materials. This procedure is quite involved and addresses steps including test data acquisition, post processing, calculations, classification, report generation and most importantly, storage of such innumerable material properties in a structured manner to facilitate ease of retrieval and updating of properties. It is also highly desirable to have a synergy of the databank directly with simulation tools. Further, all of these steps need to be accurate, non-speculative and quick.
Technical Paper

Piezo Based Testing Facilities to Discover New Areas in Material Characterisation

2014-04-28
2014-28-0032
The fatigue life approach is the main topic of structural durability. Improved methods for the numerical fatigue analysis should be based on experimental results. In some fields of material testing progress in research are very hard to achieve. Especially the regime of amplitudes below the knee point of the SN-curve with a huge number of load cycles to failure is one of these challenges with respect to fatigue tests. With standard testing devices, 108 to 1010 cycles cannot be achieved in a reasonable time span because of their low and limited testing frequencies or their inflexible control systems concerning variable amplitude loading. For this reason, a new piezo based testing facility has been developed by Fraunhofer LBF which is capable to master this challenge. Built up with a high performance piezo actuator and a specially designed high frequency load frame this testing facility enables test frequencies up to 1.000Hz and locking forces of 10kN.
X