Refine Your Search

Search Results

Technical Paper

A Fuzzy Based Vehicle Dynamic Stability Control (FDSC)

2006-10-31
2006-01-3483
In this paper, we explain the process of designing a fuzzy based controller which can be installed in a vehicle. This controller uses sensors and actuators to coordinate suspension, brakes and steering system in critical situations to help a driver maintain the kinetic balance of the vehicle. An advantage of this controller is that it doesn't interfere with the driver's habit in vehicle control and it resumes functioning only in critical moments. Using various actuators and sensors, we introduce a new approach to detect instability and the turnover threshold. This makes the proposed fuzzy analyzer a novel one.
Technical Paper

A Fuzzy Logic Based Driver Fatigue Detection System

2007-10-30
2007-01-4276
In this paper, we explain the process of designing fuzzy based analyzers which can be installed in a vehicle. These analyzers use some kinds of sensors to detect the driver fatigue. This system helps a driver to be alert during vehicle driving. We propose a fatigue detection method which works in different way from the previous systems. In this method using some tactile sensors, the system predicts fatigue before the driver falls asleep, while driver's alertness and reaction decreases and the probability of the accident increases. An alarm massage concentrates the driver attention while s/he is going to be fallen in sleep. An advantage of this kind of fatigue detection is that it doesn't interfere with the driver's habit in vehicle control and it resumes functioning only in critical moments.
Technical Paper

A Fuzzy System to Determine the Vehicle Yaw Angle

2004-03-08
2004-01-1191
The reproduction of the vehicle motion is a crucial element of accident reconstruction. Apart from the position of the center of gravity in an inertial coordinate system, the vehicle heading plays an important role. The heading is the sum of the yaw angle and the vehicle body side slip angle. In standard vehicles, the yaw angle can be determined using the yaw rate sensor and the wheel speeds. However, the yaw rate sensor is often subject to temperature drift. The wheel speed signals are forged at low speeds or due to slip. These errors result in significant deviations of reconstructed and real vehicle heading. Therefore, an intelligent combination of these signals is required. This paper describes a fuzzy system which is capable to increase the accuracy of yaw angle calculation by means of fuzzy logic. Before the data is applied to the fuzzy system, it is preprocessed to ensure the accuracy of the fuzzy system inputs.
Technical Paper

A GPS Based System for Minimizing Jolts to Heavy Equipment Operators

2004-10-26
2004-01-2726
When two pieces of heavy equipment interact, jolting and jarring can occur. During haulage truck loading for example, there is a chance that the operator of one or both pieces of the equipment will experience jolting and jarring. Additionally, a jolt can occur when an off highway equipment operator drives over a road defect or inadvertently strikes a berm. Aside from the operators, there is seldom anyone else that witnesses the interaction and can accurately describe the extent of the jolting. This makes it difficult for health and safety managers to address jolting and jarring. The devices and software described in this paper constitute a method for installing “black boxes” called Shox Boxes onboard equipment that already have a GPS system onboard. The resulting configuration provides an objective assessment of jolting and a chance to determine the root causes of it.
Journal Article

A Gain-Scheduled PID Controller for Automatic Path Following of a Tractor Semi-Trailer

2013-04-08
2013-01-0687
Improving driving safety and freeway capacity is an indispensable research issue for road vehicles, especially for tractor semi-trailers, which on the one hand exhibit unstable motion modes at high speeds due to their articulated configurations and undertake the largest part of freight transportation on freeways. Automatic driving is rated as the ultimate solution of vehicle safety since it can significantly reduce accidents resulting from human driver errors. Proposed in this paper is a gain-scheduled PID controller for automatic path-following of a tractor semi-trailer. The PID controller minimizes the vehicle's predicted lateral deviation and heading error with respect to the desired path at a preview point, and gains of the controller are scheduled with respect to vehicle speed.
Technical Paper

A Game Model of Lane Changing for Bus Exiting in a Connected Environment

2020-12-30
2020-01-5153
The research on connected vehicles has attracted much interest of governments and research institutions in these days. As researchers who have been deeply intrigued, we are particularly interested in investigating the lane changing issues of connected buses when exiting bus stops. In order to examine the utilities of both the buses and social vehicles in a connected environment, we employ the game theory to analyze the interactions between them. A two-player, non-cooperative, non-zero-sum game model was built in this paper. We analyzed 5 different scenarios for bus exiting at bus bay stops and curbside bus stops. The payoffs considered in the game model were mainly from the perspective of safety and time. Besides the commonly studied safety issues caused by collisions, we supplement the existing literature by adding on non-collision injuries caused by improper driving behaviors (e.g. excessive acceleration).
Technical Paper

A General Formulation for Topology Optimization

1994-11-01
942256
Topology optimization is used for obtaining the best layout of vehicle structural components to achieve predetermined performance goals. Unlike the most common approach which uses the optimality criteria methods, the topology design problem is formulated as a general optimization problem and is solved by the mathematical programming method. One of the major advantages of this approach is its generality; thus it can solve various problems, e.g. multi-objective and multi-constraint problems. The MSC/NASTRAN finite element code is employed for response analyses. Two automotive examples including a simplified truck frame and a truck frame crossmember are presented.
Technical Paper

A Generalized Component Efficiency and Input-Data Generation Model for Creating Fleet-Representative Vehicle Simulation Cases in VECTO

2019-04-02
2019-01-1280
The Vehicle Energy Consumption calculation Tool (VECTO) is used for the official calculation and reporting of CO2 emissions of HDVs in Europe. It uses certified input data in the form of energy or torque loss maps of driveline components and engine fuel consumption maps. Such data are proprietary and are not disclosed. Any further analysis of the fleet performance and CO2 emissions evolution using VECTO would require generic inputs or reconstructing realistic component input data. The current study attempts to address this issue by developing a process that would create VECTO input files based as much as possible on publicly available data. The core of the process is a series of models that calculate the vehicle component efficiency maps and produce the necessary VECTO input data. The process was applied to generate vehicle input files for rigid trucks and tractor-trailers of HDV Classes 4, 5, 9 and 10.
Technical Paper

A Generalized Isobaric and Isochoric Thermodynamic Scavenging Model

1987-09-01
871657
As a non-predictive model of the scavenging process, a generalized thermodynamic model has been suggested. This model can give a thermodynamic description for any possible scavenging process. Having specified a history of the scavenging process, this model is suitable for all scavenging systems including cross, loop and uniflow scavenging schemes. For the simplified isobaric and isochoric model with respectively constant coefficients of intake and discharge proportions during different scavengine phases, analytical solutions for this model have been obtained. From these, all existing models with the isobaric and isochoric assumptions can be derived.
Technical Paper

A Generalized Solution of Non-Steady State Vehicle Off Tracking in Constant Radius Curves

1985-12-01
852333
A simplified mathematical solution to predict transient off tracking of multiple vehicle combinations is presented. The generalized equations assume a constant radius curve of any angular duration with a tangent lead in and run out. The validated solution yields the off tracking of a vehicle or vehicle combination with respect to a track mounted observer. The equations are of continuous piecewise form and are field solvable.
Technical Paper

A Generalized Theoretical Model of Tire Cornering Properties in Steady State Condition

1997-11-17
973191
A generalized theoretical model of tire cornering properties is presented in steady state condition with lateral deflection of tread and complex deformation of carcass under consideration. The model is suitable for full range of vertical load and slip angle. Six parameters are defined to represent the characteristics of tire stiffness, contact pressure distribution and carcass deformation. The model is validated against test data. Some simplified models, e.g. brush model, HSRI model when longitudinal force is zero, Fiala model etc., can be derived as some specific cases of this model. The analytic model provides a sound foundation for semi-empirical expression and gains insight into study of vehicle system dynamics.
Technical Paper

A Generic Model for the Robust Design of Snap-Fit Wheelcaps

1993-11-01
933018
In this paper the robust design method was applied to a vehicle wheel trim cap. A robust wheelcap design which does not fall off during operation, yet is easy to install and remove is generally desired. A generic model of the cap was first developed which relates performance measures such as insertion and removal forces to the design parameters. The model was then linked to an optimization program to solve for an optimal design. The optimized wheelcap is shown to be able to achieve the design goals despite of the high variation of the dimensions and material properties of the plastic material. The performance variation is significantly reduced when compared to the original wheelcap.
Technical Paper

A Giant Tractor Shovel - The 475

1967-02-01
670287
Production cost analyses show a potential economic advantage for thegiant loaders on large jobs. This paper presents a cost comparison between the Model 475 tractor shovel, a smaller tractor shovel, and a swing shovel. Evolutionary events and designs leading to the creation of the 475 are presented and discussed. Design considerations and specific features of this unit are pointed out. Some of these are: loader linkage design, hollow boom construction, split hydraulic system, and a hydraulic power assist for operator controls. Prototype testing and changes are discussed and explained.
Journal Article

A Global Optimal Energy Management System for Hybrid Electric off-road Vehicles

2017-03-28
2017-01-0425
Energy management strategies greatly influence the power performance and fuel economy of series hybrid electric tracked bulldozers. In this paper, we present a procedure for the design of a power management strategy by defining a cost function, in this case, the minimization of the vehicle’s fuel consumption over a driving cycle. To explore the fuel-saving potential of a series hybrid electric tracked bulldozer, a dynamic programming (DP) algorithm is utilized to determine the optimal control actions for a series hybrid powertrain, and this can be the benchmark for the assessment of other control strategies. The results from comparing the DP strategy and the rule-based control strategy indicate that this procedure results in approximately a 7% improvement in fuel economy.
Technical Paper

A Graphic Computer Simulation of the Pedestrian Vehicle Impact

1982-02-01
820170
This paper presents an interactive computer simulation of the pedestrian/vehicle interface. The simulation presents the results in an easy to analyze format including animation of the whole event. User requests for specific output data is available via a graphic menu. The model employs the use of the MacLaughlin/Daniel Computer Simulation developed by the National Highway Traffic Safety Administration. To illustrate the usefulness of the graphical and pictorial output, the results of a pedestrian/vehicle impact are presented.
Technical Paper

A Heavy Duty 18 Speed Transmission

1987-11-01
872236
The development of a range type transmission that splits both the low and the high range has led to some unexpected benefits of simpler and easier shifting. Employing fewer and simpler parts, an eighteen speed transmission has been developed that allows pre-selection of all splitter shifts and eliminates special shift sequencing that has been required on traditional products. Spin-off of these techniques can be extended into many other configurations that are popular in the trucking industry.
Technical Paper

A High Efficiency Valve for a Locomotive Air Brake Compressor

1986-05-01
860884
New low loss valves have been designed for an existing railroad air brake compressor. Prototypes of these valves have been built and tested in the laboratory. These valves increase the efficiency of the compressor by 13% when operating at full load and rated speed with corresponding improvements at lower speed and when unloaded. Total operating hours on the test compressor with the high efficiency valves installed total over 4000 as of 1/1/86. The Association of American Railroads has a committee working to find ways of increasing locomotive and rolling stock efficiency and hence reducing fuel costs. As part of this task, the committee considered ways of reducing the power consumption of the air brake compressor. We at Worthington Dresser were asked whether the technology we had developed to increase the efficiency of large stationary compressors could be applied to the locomotive compressor.
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
Technical Paper

A High Efficient Dynamic Short Test for Vehicle Emissions

1987-11-01
872099
During the past decades the public acceptance of the actual environmental legislation has gradually turned into an active support of the same. Test methods have anyhow become more cost heavy and time consuming, underlining the need of simplified tests with reasonable correlation to the legal methods. Generally, the emissions under static and semistatic load conditions are gradually eliminated, why the heavy pollution now comes from transient periods of the driving pattern. Consequently a transient test procedure must satisfy the quality requirements on a short test applicable to vehicles from cars to heavy trucks and busses. The INertia COLLection system described here is developed to enable low cost and well repeatable measurements of the emission characteristics of engine systems in light and heavy vehicles under transient load. The system is easy to adopt and does not need any chassis dynamometer.
Journal Article

A High Functional Safety Performance Level Machine Controller for a Medium Size Agricultural Tractor

2014-09-30
2014-01-2421
Functional safety requirements and solutions are more expensive when it comes to lower cost machines with less power but same functionalities with respect to big machines. The paper will show a real Electronic Control Unit (ECU) design of a machine controller, controlling both engine working point, transmission, and other utilities like PTO, 4WD, brakes and Differential Lock; the ECU was designed in accordance to ISO 25119 regulation, to meet AgPL = C or even D for some functionalities. The unit is a fully redundant electronic control unit with two CAN networks and some special safe state oriented mechanism, that allow the Performance Level C with less software analysis requirements compared with traditional solutions. All safety critical sensors are redounded and singularly diagnosable, all command effects are directly observable and most of commands are directly diagnosable.
X