Refine Your Search

Search Results

Technical Paper

Comparison and Evaluation of Performance, Combustion and Particle Emissions of Diesel and Gasoline in a Military Heavy Duty 720 kW CIDI Engine Applying EGR

2020-09-15
2020-01-2057
Investigating the impact of Gasoline fuel on diesel engine performance and emission is very important for military heavy- duty combat vehicles. Gasoline has great potential as alternative fuel due to rapid depletion of petroleum reserves and stringent emission legislations, under multi fuel strategy program for military heavy- duty combat vehicle. There is a known torque, horsepower and fuel economy penalty associated with the operation of a diesel engine with Gasoline fuel. On the other hand, experimental studies have suggested that Gasoline fuel has the potential for lowering exhaust emissions, especially NOx, CO, CO2, HC and particulate matter as compared to diesel fuel. Recent emission legislations also restrict the total number of nano particles emitted in addition to particulate matter, which has adverse health impact.
Technical Paper

Optimization of Piston Bowl Geometry for a Low Emission Heavy-Duty Diesel Engine

2020-09-15
2020-01-2056
A computational fluid dynamics (CFD) guided design optimization was conducted for the piston bowl geometry for a heavy-duty diesel engine. The optimization goal was to minimize engine-out NOx emissions without sacrificing engine peak power and thermal efficiency. The CFD model was validated with experiments and the combustion system optimization was conducted under three selected operating conditions representing low speed, maximum torque, and rated power. A hundred piston bowl shapes were generated, of which 32 shapes with 3 spray angles for each shape were numerically analyzed and one optimized design of piston bowl geometry with spray angle was selected. On average, the optimized combustion system decreased nitrogen oxide (NOx) emissions by 17% and soot emissions by 41% without compromising maximum engine power and fuel economy.
Technical Paper

Combustion Characteristics, Performance and NOx Emissions of a Heavy-Duty Ethanol-Diesel Direct Injection Engine

2020-09-15
2020-01-2077
Diffusive combustion of direct injected ethanol is investigated in a heavy-duty single cylinder engine for a broad range of operating conditions. Ethanol has a high potential as fossil fuel alternative, as it provides a better carbon footprint and has more sustainable production pathways. The introduction of ethanol as fuel for heavy-duty compression-ignition engines can contribute to decarbonize the transport sector within a short time frame. Given the resistance to autoignition of ethanol, the engine is equipped with two injectors mounted in the same combustion chamber, allowing the simultaneous and independent actuation of the main injection of pure ethanol and a pilot injection of diesel as an ignition source. The influence of the dual-fuel injection strategy on ethanol ignition, combustion characteristics, engine performance and NOx emissions is evaluated by varying the start of injection of both fuels and the ethanol-diesel ratio.
Technical Paper

Toward Predictive Combustion Modeling of CNG SI Engines in 1D Simulation Tools

2020-09-15
2020-01-2079
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional fuel to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

Numerical Methods on VVA and VCR Concepts for Fuel Economy Improvement of a Commercial CNG Truck

2020-09-15
2020-01-2083
Natural gas has been used in spark-ignition (SI) engines of natural gas vehicles (NGVs) due to its resource availability and stable price compared to gasoline. It has the potential to reduce carbon monoxide emissions from the SI engines due to its high hydrogen-to-carbon ratio. However, short running distance is an issue of the NGVs. In this work, methodologies to improve the fuel economy of a heavy-duty commercial truck under the Japanese Heavy-Duty Driving Cycle (JE05) is proposed by numerical 1D-CFD modeling. The main objective is a comparative analysis to find an optimal fuel economy under three variable mechanisms, variable valve timing (VVT), variable valve actuation (VVA), and variable compression ratio (VCR). Experimental data are taken from a six-cylinder turbocharged SI engine fueled by city gas 13A. The 9.83 L production engine is a CR11 type with a multi-point injection system operated under a stoichiometric mixture.
Technical Paper

Influence of Injection Timing on Equivalence Ratio Stratification of Methanol and Isooctane in a Heavy-Duty Compression Ignition Engine

2020-09-15
2020-01-2069
CO2 is a greenhouse gas that is believed to be one of the main contributors to global warming. Recent studies show that a combination of methanol as a renewable fuel and advanced combustion concepts could be a promising future solution to alleviate this problem. However, high unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions can be stated as the main drawback in low load operations when using methanol under advanced combustion concepts. This issue can be mitigated by modifying the stratification of the local equivalence ratio to achieve a favorable level. The stratifications evolved, and the regimes that can simultaneously produce low emissions, and high combustion efficiency can be identified by sweeping the injection timing from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC). Understanding how the stratification of the local equivalence ratio for methanol evolves during the sweep is essential to gain these benefits.
Technical Paper

Exhaust Emissions from a City Bus Fuelled by Oxygenated Diesel Fuel

2020-09-15
2020-01-2095
The benefits associated with the use of oxygen-containing diesel fuels in passenger cars are quite well described in the literature. This work describes the results of an 18-meter EEV city bus fueled with diesel fuel with the addition of 10% v/v of triethylene glycol dimethyl ether. This compound was chosen because it was effective in reducing exhaust emissions from light duty diesel vehicles. Emission tests (CO, HC, NOx and PM) of the city bus were performed over SORT (Standardized On-Road Tests) cycles using portable exhaust gas analyzers - PEMS. Significant differences in the emission of exhaust components were observed in individual SORT cycles. The level of road emissions reduced as the traffic smoothness increased, i.e. from the SORT 1 to SORT 3 cycle. The largest reduction in bus emissions associated with the use of the oxygenated additive (triethylene glycol dimethyl ether) applies to carbon monoxide and ranges from 50% for the SORT 3 cycle up to 90% for the SORT 1.
Technical Paper

The Impact of the Fleet Age Structure on the Cold-Start Emission. Case Study of the Polish Passenger C and Light Commercial Vehicles

2020-09-15
2020-01-2091
Road transport sector is significant source of the air pollution in Poland. The total exhaust emission from particular vehicle is estimated as the total mass of the selected air pollutant released into the air during the vehicle’s trip. In the context of the thermodynamic conditions, the total exhaust emission can be split into two parts: hot emission, when the engine achieves the normal operating temperature, and cold-start emission - produced during the thermally unstable engine’s operating conditions. The aim of the paper is to present results of mathematical modelling of the influence of the fleet age structure used in Poland on the cold-start emissions which are released into the air shortly after the engine’s start. There are considered emissions from the passenger cars, and the light commercial vehicles.
Technical Paper

Investigation of Driving Style Impact on the Ecological Indicators of a Diesel Multiple Unit (SAE Paper 2020-01-2213)

2020-09-15
2020-01-2213
The topics covered in the publication are consistent with the global trends that are aimed at reducing the negative environmental impact of human activities, which are implemented simultaneously in two areas: approval and operation. The article presents issues related to the impact of diesel multiple unit operation on the exhaust emission of harmful and toxic components and fuel consumption. Research trials concerned different driving styles and acceleration patterns of the tested vehicle, which can be considered a part of the eco-driving trend. These tests were carried out on a closed track designated for testing rail vehicles with the use of mobile measuring apparatus, intended for testing vehicles in real conditions of their operation.
Technical Paper

Complex Assessment of Fuel Efficiency and Diesel Exhaust Toxicity

2020-09-15
2020-01-2182
Problems of reducing emissions of harmful substances and fuel consumption of the engine are interrelated, since they are mainly determined by the work process. Measures aimed to reducing fuel consumption cause changes, often upwards, toxic compound formation. The fuel and environmental criterion is proposed taking into account the engine operating conditions for a reasonable choice of technical solutions for the comprehensive improvement of fuel economy and toxic level indicators of the exhaust gases. This criterion allows assessing the effectiveness of solutions to improve combustion efficiency, the use of alternative fuels, exhaust gas aftertreatment systems, and other measures.
Technical Paper

Characterization of Physical and Chemical Properties of Particulate Emissions of a Modern Diesel-Powered Tractor under Real Driving Conditions

2020-09-15
2020-01-2204
In this study, tailpipe-sampling was used to sample the exhaust aerosol of a Stage IV tractor equipped with Diesel Oxidation Catalyst (DOC) and Selective Catalytic Reduction (SCR) aftertreatment systems. The particle emissions were characterized in terms of number concentration (particle size of > 2.5 nm), mass concentration (particle size of 6-612 nm) BC mass concentration and chemical composition (particle size of > 30 nm). The measurements were conducted on-road by setting a mobile laboratory on a trailer and pulling it with the tractor. In addition to driving, heavy-lift work cycles were tested, where separate lifts of a 1000 kg weight were conducted with the front fork of the tractor with two minutes of idling between consecutive lifts. Both a Porous Tube Diluter (PTD) with ambient temperature dilution air as well as an ejector diluter with hot dilution air were used to sample the exhaust aerosol.
Technical Paper

Temperature Compensation Control Strategy of Assist Mode for Hydraulic Hub-Motor Drive Vehicle

2020-04-21
2020-01-5046
Based on the traditional heavy commercial vehicle, hydraulic hub-motor drive vehicle (HHMDV) is equipped with a hydraulic hub-motor auxiliary drive system, which makes the vehicle change from the rear-wheel drive to the four-wheel drive to improve the traction performance on low-adhesion road. In the typical operating mode of the vehicle, the leakage of the hydraulic system increases because of the oil temperature rising, this makes the control precision of the hydraulic system drop. Therefore, a temperature compensation control strategy for the assist mode is proposed in this paper. According to the principle of flow continuity, considering the loss of the system and the expected wheel speed, the control strategy of multifactor target pump displacement based on temperature compensation is derived. The control strategy is verified by the co-simulation platform of MATLAB/Simulink and AMESim.
Technical Paper

Modeling and Parameter Estimation of Automatic Transmission for Heavy-Duty Vehicle Using Dual Clutch Scheme

2020-09-15
2020-01-2242
This paper focuses on modeling of the heavy-duty vehicle drivetrain with automatic transmission by using dual clutch scheme. The planetary gear set in the automatic transmission is complicated structure and difficult to understand. The advantage of the dual clutch scheme is that it can be used to represent the complex planetary gear set intuitively, which is a great help to understand the gear shifting process. It is also suitable for being used in the controller due to its low order. Some conditions are required to convert the planetary gear set to the dual clutch model. The heavy-duty vehicle driveline can be converted to the dual clutch model due to its heavy engine and vehicle inertia. This paper also proposes system parameter estimation methods to represent the driveline model. The main parameters are lumped inertia, lumped gear efficiency, output shaft compliance and friction coefficient of clutches.
Technical Paper

Research of the Gas Fuel Supply Process on the Compression Stroke in Ship’s Low-Speed Gas-Diesel Engines

2020-09-15
2020-01-2107
In connection with the tightening of environmental standards, the leading manufacturers of marine low-speed engines are carrying out intensive work on their conversion to gas fuels. Due to the design features in this class of engines, only internal mixture formation is possible. For the organization of which two different approaches are possible. To date, only two are currently implemented. MAN started production of engines with gas fuel supply to the working cylinder under high pressure at the end of the compression stroke, and WinGD under low pressure at the beginning of the compression stroke. The analysis, performed by the authors, showed, that increasing the pressure before the gas supplying mechanisms to 3.5...6.0 MPa can reduce the residence time of the gas-air mixture in the working cylinder and reduce the likelihood of detonation combustion.
Technical Paper

Optical Characterization of Methanol Sprays and Mixture Formation in a Compression-Ignition Heavy-Duty Engine

2020-09-15
2020-01-2109
Methanol is not a fuel typically used in compression ignition engines due to the high resistance to auto-ignition. However, conventional diesel combustion and PPC offer high engine efficiency along with low HC and CO emissions, albeit with the trade-off of increased NOx and PM emissions. This trade-off balance is mitigated in the case of methanol and other alcohol fuels, as they bring oxygen in the combustion chamber. Thus methanol compression ignition holds the potential for a clean and effective alternative fuel proposition. Most existing research on methanol is on SI engines and very little exists in the literature regarding methanol auto-ignition engine concepts. In this study, the spray characteristics of methanol inside the optically accessible cylinder of a DI-HD engine are investigated. The liquid penetration length at various injection timings is documented, ranging from typical PPC range down to conventional diesel combustion.
Technical Paper

Experimental Investigation of Ignition Delay of Bio-Diesel and Its Blends

2020-09-15
2020-01-2152
In this work, the ignitjion delay of bio-diesel and its blends with diesel at atmospheric pressure and temperature 8500C has been studied. The results are compared to those for diesel oil. Specifically, the suspended fuel droplet is inserted into a hot combustion chamber containing atmospheric air at temperatures which varied from 6250 - 8500C. The fuel droplet is suspended on the fine silica fibre wire of diameter 550 micron. It is mounted on rod and inserted in the hot combustion chamber at atmospheric condition. The ignition of the droplet is observed by optical circuit (optical sensor) and recorded by CRO. The ignition time is determined for calculating ignition delay. The results are plotted on the ignition delay ln(t) - 1/Temperature, K-1 coordinates to obtain the value of Activation Energy, EA. It has been found that the value of Activation Energy, EA is 44.3kJ for bio-diesel and 53.4kJ for diesel.
Technical Paper

Circumstances of Railway Transport Hydrogenization in Poland

2020-09-15
2020-01-2131
Hydrogen Fuel-Cell (HFC) technology is popular in Asia (mainly Japan), the US (chiefly California) and Europe. HFC is mostly used in passenger cars and urban buses. HFC technology is also being introduced to railway transport. Hydrogen-powered trains are an attractive alternative to diesel trains, in particular on nonelectrified railways - where roughly 70% of the world’s 200 000 locomotives operate today - and in the markets of Europe and the US (together about 55 000 diesel locomotives today). Besides avoiding carbon emissions, hydrogen trains reduce noise and eliminate local emissions of NOX and particulates. Since they use significant amounts of hydrogen, the required infrastructure is limited and can be immediately utilised. Hydrogen-powered trains are already being introduced for light-rail vehicles and regional railways - such as the trams produced by the China South Rail Corporation.
Technical Paper

Theoretical Assessment of Rigs for Accelerated Ash Accumulation in Diesel Particulate Filters

2020-09-15
2020-01-2175
Renewable fuels from different feedstocks can enable sustainable transport solutions with significant reduction in greenhouse gas emissions compared to conventional petroleum-derived fuels. Nevertheless, the use of biofuels in diesel engines will still require similar exhaust gas cleaning systems as for conventional diesel. Hence, the use of diesel particulate filters (DPF) will persist as a much needed part of the vehicle’s aftertreatment system. Combustion of renewable fuels can potentially yield soot and ash with different properties as well as larger amounts of ash compared to conventional fossil fuels. The faster ash build-up and altered ash deposition pattern lead to an increase in pressure drop over the DPF, increase the fuel consumption and call for premature DPF maintenance or replacement. Prolonging the maintenance interval of the DPF for heavy-duty trucks, having a demand for high up-time, is highly desirable.
Technical Paper

High Voltage Battery (HVB) Durability Enhancement in Electric Mobility through 1D CAE

2020-08-18
2020-28-0013
The public transport in India is gradually shifting towards electric mobility. Long range in electric mobility can be served with High Voltage Battery (HVB), but HVB can sustain for its designed life if it’s maintained within a specific operating temperature range. Appropriate battery thermal management through Battery Cooling System (BCS) is critical for vehicle range and battery durability This work focus on two aspects, BCS sizing and its coolant flow optimization in Electric bus. BCS modelling was done in 1D CAE software. The objective is to develop a model of BCS in virtual environment to replicate the physical testing. Electric bus contain numerous battery packs and a complex piping in its cooling system. BCS sizing simulation was performed to keep the battery packs in operating temperature range.
Technical Paper

CFD Investigation of Exhaust Gas Bypass on Trolley Heating

2020-08-18
2020-28-0006
Most of the automobile and off-road vehicles leave the 100% exhaust gases to atmosphere. The temperature of the exhaust gas ranges from 350-400 deg C and the exit velocity of the gas is about 40-100 m/s based on the outlet pipe design. Dump trucks are used to transport mud, sticky waste garbage and sometime ice from one place to dump yard. The paper will describe the approach of partially use the exhaust gases for truck trolley by heating the trolley surfaces from the walls. CFD software is used to evaluate the exhaust system pressure drop and bypass exhaust flow rate requirements for effective heating on trolley wall. The simulation also helped to design the appropriate baffle position for optimum pressure drop and recirculation. Conjugate heat transfer CFD analysis is carried out to predict the flow & temperature behavior of the exhaust pipe.
X