Refine Your Search

Search Results

Technical Paper

Investigation and Optimization of Front Suspension and Steering Geometrical Compatibility

2015-04-14
2015-01-0492
The need to develop products faster and to have designs which are first time right have put enormous pressure on the product development timelines, thus making computer aided optimization one of the most important tool in achieving these targets. In this paper, a design of experiments (DOE) study is used, to gain an insight as to, how changes to different parameters of front suspension and steering of a passenger bus affect its kinematic properties and thus to obtain an optimized design in terms of handling parameters such as bump steer, percent ackermann error and lock to lock rotation angle of steering wheel. The conventional hit and trial method is time consuming and monotonous and still is an approximate method, whereas in design of experiments (DOE), a model is repeatedly run through simulations in a single setup, for various combinations of parameter settings.
Technical Paper

Investigation and Reduction of Brake Squeal and Groan Noise

2015-09-27
2015-01-2687
Brake noise is one of the common complaints and an irritant not just for the vehicle occupants but equally for the passers-by. Brake noise is actually vibration that is occurring at a frequency that is audible to the human ear. This occurrence of brake noise like brake squeal (>1 kHz) and groan (<1 kHz) is often very intense and can lead to vehicle complaints. During a brake noise event, vehicle basic structure and suspension system components are excited due to brake system vibration and result in a resonance that is perceived in the form of a noise. Proposed work discusses an experimental study that is carried out on a vehicle for addressing concern regarding disc brake squeal and groan noise. Based on the preliminary inputs, vehicle level study was carried out in order to simulate the problem and objectively capture its severity.
Technical Paper

Investigation and Resolution of Vehicle Brake Judder

2020-10-05
2020-01-1609
One of the major discomforts while driving any medium to heavy commercial vehicle is brake judder. Brake judder can be defined as vibrations felt on steering wheel or brake pedal or cabin floor, when brakes are applied at certain speeds and pressures. The frequencies of this judder lie as high as 100 Hz to as low as 20 Hz. The brake judder is caused by a number of factors, which makes providing a universal solution difficult. Some of the causes are related to part fitment, part quality, material selection, manufacturing process, Design consideration, environmental factors, etc. This paper gives us a brief idea about resolution of judder problem in intermediate commercial vehicle by series of trials and this methodology can be applied in heavy commercial vehicles also. This paper gives reader an insight about step by step root cause analysis of brake judder on actual vehicle and an approach in resolving the judder problem.
Technical Paper

Investigation into Extending Diesel Engine Oil Drain Interval (Part 2) - Development of Long Drain Diesel Engine Oil Having Low Soot Dispersancy

1991-10-01
912340
Soot accumulation in diesel engine crankcase is the dominant factor which governs engine oil drain interval. So, efficient soot elimination from crankcase oil can be a practical way to achieve drain interval extension. Combination of high performance oil filter and low soot dispersancy oil results in an effective measure to trap soot efficiently. In this paper, the behavior of newly developed high performance diesel engine oil having low soot dispersancy is reported. Prior to oil development, an evaluation method of soot dispersancy in oil was elaborated. Based on relative viscosity defined as ratio of soot containing oil viscosity to soot eliminated oil viscosity, dispersancy parameter was determined. Oil dispersancy evaluated on this parameter agreed with the results obtained from particle size analyzer. Secondly, a method to obtain oil filter soot trap rate to total soot contaminated into crankcase (trap rate) was established.
Technical Paper

Investigation into Turning Behavior of Semi - trailer with Additional Trailer - wheel Steering - - A Control Method for Trailer - wheel Steering to Minimize Trailer Rear - overhang Swing in Short Turns

1991-11-01
912570
To improve the low-speed followability of semi-trailers, a control method has been developed for trailer-wheel steering. The basic concept of the control method is to steer the wheels so that the trailer rear end follows the tractor front end. Computational simulation results show that the control method minimizes the swept path of the tractor and trailer combination without causing any rear end overhang swing problems. To evaluate the effectiveness of the control method, the approximately one twelfth scale model vehicles of the tractor and semitrailer were produced. Tests on the articulated model vehicles show that better low speed follwabilty improvement is expected with path-following control compared with other trailer wheel steering control methods.
Technical Paper

Investigation of Aerodynamic Influence on Truck Platooning

2015-09-29
2015-01-2895
This paper investigates the aerodynamic influence of multiple on-highway trucks in different platooning configurations. Complex pressure fields are generated on the highways due to interference of multiple vehicles. This pressure field causes an aerodynamic drag to be different than the aerodynamic drag of a vehicle in a no-traffic condition. In order to study the effect of platooning, three-dimensional modeling and numerical simulations were performed using STAR-CCM+® commercial Computational Fluid Dynamics (CFD) tool. The aerodynamic characteristics of vehicles were analyzed in five different platooning configurations with two and three vehicles in single and multiple lanes. A significant Yaw Averaged Aerodynamic Drag (YAD) reduction was observed in both leading and trailing vehicles. YAD was based on the average result of three different yaw angles at 0°, −6° and 6°. In single-lane traffic, YAD reduction was up to 8% and 38% in leading and trailing vehicles, respectively.
Technical Paper

Investigation of Bearing Outer Cup Interference Loss in Wheel End Hub of Commercial Vehicle

2015-09-29
2015-01-2730
Ever-increasing operational cost, reducing profit margins & increase in competition, it is of upmost significance for fleet owners & drivers to opt for a vehicle having maximum uptime. OEM's are under immense pressure to design & develop vehicles/subsystems which are reliable enough to minimize downtime & withstand heavy overloading plus extreme operating conditions especially tippers. Vehicle systems like Wheel end (hub, bearing, and grease) which are designed & packaged according to a very stringent envelop & operate as a closed system facing all the extremities of operating conditions. This undoubtly make them prone to no. of failure modes which are resulting in vehicle unplanned stoppages, so any failure mode related to the same must be taken care with utmost importance. In commercial vehicles the bearing outer cup is in interference fit with the hub. These bearings of wheel hub have to be maintained at the wheel end play of few microns.
Technical Paper

Investigation of Bus Duct System for Optimum Cooling Performance

1993-11-01
931956
Uniform cooling inside a large bus in hot season is important for comfort of all the passengers. The air, which is cooled by the car cooling system, is distributed into the room space of the bus by a duct system, For some buses with a sub-engine cooling system, however, it is cold at front seats while there is little cooling at rear seats. In order to solve this problem, several factors such as equal distribution of cooling air at each nozzle, duct insulation, exchange rate of room air, heat generation of reading lamps, etc. may be studied. Among these factors, the most important one is equal distribution of the cooling air, since the cooling effect is mainly due to the cooling air stream. In this study, the duct system installed in a specific bus is treated by using a CFD code. The cooling air velocity at the foremost nozzle of the current system is 1.5-2 times that in the middle.
Technical Paper

Investigation of Different Cathode Path Topologies for Water Recovery in a Heavy-Duty Polymer Electrolyte Membrane Fuel Cell Vehicle

2024-04-25
2024-01-5050
Heavy-duty vehicles equipped with polymer electrolyte membrane fuel cells (PEM-FC) are an environmentally friendly alternative to vehicles powered by internal combustion engines. A major challenge for heavy-duty fuel cell vehicles is the potential cooling deficit under high load conditions at high ambient temperatures. To solve this problem, a spray cooling system can be utilized, in which liquid water is sprayed on the main cooler at the front end of the vehicle. The evaporation of the sprayed liquid water results in an increased cooling power. In this paper, the recovery of liquid water within the cathode loop of a mobile PEM-FC system is presented and discussed. For this purpose, three different topologies of the cathode subsystem of the PEM-FC are investigated for recovering liquid water directly from the fuel cell exhaust gas. To obtain liquid water, vapor in the exhaust gas is cooled below the saturation temperature in an additional heat exchanger.
Journal Article

Investigation of Drag Reduction Technologies for Light-Duty Vehicles Using Surface, Wake and Underbody Pressure Measurements to Complement Aerodynamic Drag Measurements

2019-04-02
2019-01-0644
A multi-year, multi-vehicle study was conducted to quantify the aerodynamic drag changes associated with drag reduction technologies for light-duty vehicles. Various technologies were evaluated through full-scale testing in a large low-blockage closed-circuit wind tunnel equipped with a rolling road, wheel rollers, boundary-layer suction and a system to generate road-representative turbulent winds. The technologies investigated include active grille shutters, production and custom underbody treatments, air dams, wheel curtains, ride height control, side mirror removal and combinations of these. This paper focuses on mean surface-, wake-, and underbody-pressure measurements and their relation to aerodynamic drag. Surface pressures were measured at strategic locations on four sedans and two crossover SUVs.
Technical Paper

Investigation of Driving Style Impact on the Ecological Indicators of a Diesel Multiple Unit (SAE Paper 2020-01-2213)

2020-09-15
2020-01-2213
The topics covered in the publication are consistent with the global trends that are aimed at reducing the negative environmental impact of human activities, which are implemented simultaneously in two areas: approval and operation. The article presents issues related to the impact of diesel multiple unit operation on the exhaust emission of harmful and toxic components and fuel consumption. Research trials concerned different driving styles and acceleration patterns of the tested vehicle, which can be considered a part of the eco-driving trend. These tests were carried out on a closed track designated for testing rail vehicles with the use of mobile measuring apparatus, intended for testing vehicles in real conditions of their operation.
Technical Paper

Investigation of EGR and Miller Cycle for NOx Emissions and Exhaust Temperature Control of a Heavy-Duty Diesel Engine

2017-10-08
2017-01-2227
In order to meet increasingly stringent emissions standards and lower the fuel consumption of heavy-duty (HD) vehicles, significant efforts have been made to develop high efficiency and clean diesel engines and aftertreatment systems. However, a trade-off between the actual engine efficiency and nitrogen oxides (NOx) emission remains to minimize the operational costs. In addition, the conversion efficiency of the diesel aftertreatment system decreases rapidly with lower exhaust gas temperatures (EGT), which occurs at low load operations. Thus, it is necessary to investigate the optimum combustion and engine control strategies that can lower the vehicle’s running costs by maintaining low engine-out NOx emissions while increasing the conversion efficiency of the NOx aftertreament system through higher EGTs.
Technical Paper

Investigation of Frequent Pinion Seal and Hub Seal Leakages on Heavy Commercial Vehicles

2010-10-05
2010-01-2015
The automotive sector is going through a phase of stiff competition among various Original Equipment Manufacturers for increasing their profitability while ensuring highest levels of customer satisfaction. The biggest challenge for such companies lies in minimizing their overall cost involving investments in Research and Development, manufacturing, after sales service and warranty costs. Higher warranty costs not only affect the net profit but in turn it also affects the brand image of the company to a large extent in the long run. An effort is made here to target such warranty costs due to frequent tail pinion and hub seal leakages on single reduction/hub reduction axles of Heavy Commercial Vehicles in the field. A preliminary study involving the severity analysis of such failures is followed by a step by step investigation of these failures.
Technical Paper

Investigation of Gasoline Compression Ignition (GCI) Combustion in a High Compression-Ratio Heavy-duty Single-Cylinder Diesel Engine

2021-04-06
2021-01-0495
In this study, a high-efficiency heavy-duty diesel engine platform was used to evaluate gasoline compression ignition (GCI) operation. The experiment was carried out using a single-cylinder engine (SCE) of a high compression ratio (22:1). Pump-grade gasoline fuel 87 research octane number (RON) was used throughout engine testing. Injection strategy was established including double and triple injection schemes to optimize both engine efficiency and emissions. Both low-temperature heat release (LTHR) and high-temperature heat release (HTHR) were seen from a two-stage combustion event resulting from the interaction of pilot and main injections. At low load conditions, besides fuel stratification level by pilot/main injection strategy, higher in-cylinder pressure can greatly improve the ignition of 1st stage combustion. As engine load increases, spray-wall interaction becomes more critical on engine efficiency and emissions performance.
Technical Paper

Investigation of Gasoline Compression Ignition in a Heavy-Duty Diesel Engine Using Computational Fluid Dynamics

2021-04-06
2021-01-0493
A computational fluid dynamics (CFD) model was developed to explore gasoline compression ignition (GCI) combustion. Results were validated with single-cylinder engine (SCE) experiments. It was shown that the CFD model captured experimental results well. Cylinder pressure, heat release and emissions from the CFD model were also used to analyze the performance of GCI combustion with a current heavy-duty diesel engine platform. This work also provides detailed analysis on in-cylinder combustion and emissions using CFD. It was found that multiple injection strategy can deliver desirable fuel stratification profile that benefits both engine and emissions performance. A wave contoured piston was compared with a stepped-lip type piston for both GCI and Diesel combustion scenarios on the same engine platform. Stepped-lip pistons offer an opportunity to use multiple injection strategies to overcome high UHC emissions of GCI combustion when compared to wave pistons.
Technical Paper

Investigation of Heat Transfer Characteristics of Heavy-Duty Spark Ignition Natural Gas Engines Using Machine Learning

2022-03-29
2022-01-0473
Machine learning algorithms are effective tools to reduce the number of engine dynamometer tests during internal combustion engine development and/or optimization. This paper provides a case study of using such a statistical algorithm to characterize the heat transfer from the combustion chamber to the environment during combustion and during the entire engine cycle. The data for building the machine learning model came from a single cylinder compression ignition engine (13.3 compression ratio) that was converted to natural-gas port fuel injection spark-ignition operation. Engine dynamometer tests investigated several spark timings, equivalence ratios, and engine speeds, which were also used as model inputs. While building the model it was found that adding the intake pressure as another model input improved model efficiency.
Technical Paper

Investigation of Hybrid Drive Trains for Railway Vehicles

2001-08-20
2001-01-2525
The concept of hybrid drive trains was first developed for automobiles. These drive trains allow achieving a minimum fuel consumption by properly matching the driving requirements and the engine characteristics. In this paper the authors analyze the possibility of extending this concept to railway vehicles. Basic hybrid railway vehicles are designed and discussed.
Technical Paper

Investigation of In-Use Deterioration of Exhaust Emissions from Small Single Cylinder Two Stroke-Cycle Engines

1995-09-01
952137
A Cross section of engines used to power hand held portable power equipment, both current production engines and engines designed to meet California's Tier I Exhaust Emission Limits (See Table #1), were subjected to actual field use and accelerated laboratory aging. Test data shows good correlation between actual field usage and accelerated laboratory aging. Both standard production and new lower emission type engines showed decreases in emissions during initial hours (0 - 10) and very minimal to no deterioration of engine exhaust emissions with respect to usage.
Technical Paper

Investigation of Long Term Urea Exposure on Substrate Support Mats Systems

2012-09-24
2012-01-1958
Selective catalytic reduction (SCR) technology is capable to deliver significant reduction of NOx emissions from diesel engines. This system relies on the use of urea as a reductant that is sprayed into the exhaust flow before reaching the ceramic substrate containing the SCR catalyst. This study describes the effect of urea exposure on substrate support mats when installed in full scale SCR units. Individual systems were aged to 500, 1000, 2000 and 3500 hours. After the aging was completed the devices were torn down and testing was completed on the mat and substrate. Tests were performed to search for the presence of crystalline urea inside the support mat fiber matrix and several analytical tests were performed to determine whether urea exposure and built up caused deterioration of mat pressure and its long term durability.
Technical Paper

Investigation of On-Road Crosswinds on Interstate Tractor-Trailer Aerodynamic Efficiency

2014-04-01
2014-01-0608
Heavy duty tractor-trailers under freeway operations consume about 65% of the total engine shaft energy to overcome aerodynamic drag force. Vehicles are exposed to on-road crosswinds which cause change in pressure distribution with a relative wind speed and yaw angle. The objective of this study was to analyze the drag losses as a function of on-road wind conditions, on-road vehicle position and trajectory. Using coefficient of drag (CD) data available from a study conducted at NASA Ames, Geographical Information Systems model, time-varying weather data and road data, a generic model was built to identify the yaw angles and the relative magnitude of wind speed on a given route over a given time period. A region-based analysis was conducted for a study on interstate trucking operation by employing I-79 running through West Virginia as a case study by initiating a run starting at 12am, 03/03/2012 out to 12am, 03/05/2012.
X