Refine Your Search

Search Results

Journal Article

A Central Differential Gear Ratio Optimization of a 6×6 Articulated Dump Truck

2015-09-29
2015-01-2787
This paper starts with an analysis of design configurations of the drivelines with different power-dividing units (PDUs) of main dump truck manufacturing companies. As it follows from the analysis, improvements of articulated truck energy efficiency and reduction of fuel consumption by optimizing the power distribution to the drive wheels are still open issues. The problem is that a variety of operating and terrain conditions of dump trucks requires different wheel power distributions that cannot be provided by one set of PDUs employed in a truck. The central PDU in the transfer case was identified as the most important PDU among the five PDUs, which plays a crucial role in the power distribution between the front axle and the rear tandem of a 6×6 articulated dump truck. The paper formulates a constraint optimization problem to minimize the tire slippage power losses by optimizing the power distribution between the drive wheels.
Technical Paper

A Chemical Industry's View of Application Needs

1985-11-01
851094
Current trends in application technology indicate an increasing realization on the part of manufacturers and users of agricultural chemicals of the important role that application techniques and/or equipment play in the overall success of pesticide application. The trends that are most significantly influencing the way chemicals are currently applied include: increased emphasis on improving the accuracy of application increased use of low volume application (3-8 GPA) renewed interest in use of granular application increased use of conservation tillage increased emphasis on reduction in environmental contamination, both within and outside the target area increased use of highly active cam-pounds
Technical Paper

A Close-Range Photogrammetric Solution Working with Zoomed Images from Digital Cameras

2012-04-16
2012-01-0612
Close-range photogrammetry (CRP) is traditionally based on a network captured with the camera lens at a fixed focal length. A zoom lens is not desirable without solving the intrinsic camera parameters for varying focal length and lens distortion. When using a zoom lens camera, multiple focal lengths can be used if the camera is calibrated for each varying focal length, but most consumer grade lenses are not designed to accurately return to (or stay at) mid-range focal lengths. Similarly, using close-range photogrammetric software systems to accurately recover three-dimensional (XYZ) data from Point and Shoot (PAS) digital cameras has been problematic when the images were not intended for CRP. PAS cameras are automatically refocused and easily zoomed so the focal length and lens distortion are typically unknown for CRP mensuration purposes. In such circumstances, traditional CRP analysis can be both laborious and difficult without the correct camera parameters.
Technical Paper

A Closed Cycle Simulation Model with Particular Reference to Two-Stroke Cycle Engines

1991-09-01
911847
A quasi-dimensional computer simulation model is presented to simulate the thermodynamic and chemical processes occurring within a spark ignition engine during compression, combustion and expansion based upon the laws of thermodynamics and the theory of equilibrium. A two-zone combustion model, with a spherically expanding flame front originating from the spark location, is applied. The flame speed is calculated by the application of a turbulent entrainment propagation model. A simplified theory for the prediction of in-cylinder charge motion is proposed which calculates the mean turbulence intensity and scale at any time during the closed cycle. It is then used to describe both heat transfer and turbulent flame propagation. The model has been designed specifically for the two-stroke cycle engine and facilitates seven of the most common combustion chamber geometries. The fundamental theory is nevertheless applicable to any four-stroke cycle engine.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Commercial Excavator: Analysis, Modelling and Simulation of the Hydraulic Circuit

2012-09-24
2012-01-2040
The paper addresses some aspects of an ongoing research on a commercial compact excavator. The interest is focused on the analysis and modelling of the whole hydraulic circuit that, beside a load sensing variable displacement pump, features a stack of nine proportional directional control valves modules of which seven are of the load sensing type. Loads being sensed are the boom swing, boom, stick and bucket, right and left track motors and work tools; instead, the blade and the turret swing users do not contribute to the load sensing signal. Of specific interest are the peculiarities that were observed in the stack. In fact, to develop an accurate AMESim modelling, the stack was dismantled and all modules analysed and represented in a CAD environment as 3D parts. The load sensing flow generation unit was replaced on the vehicle by another one whose analysis and modelling have been developed using available design and experimental data.
Technical Paper

A Compact Cooling System (CCS™): The Key to Meet Future Demands in Heavy Truck Cooling

2001-05-14
2001-01-1709
To meet future needs for heavy truck cooling, a novel high performance radial compact cooling system (CCS) was developed. Measurements with a prototype system were conducted in a component wind tunnel and with truck-installed systems in a climatic vehicular wind tunnel. The CSS is compared to conventional axial and side-by-side systems. In comparison with a conventional axial system, the performance per unit volume of the CCS is 42% higher, the noise level is about 6 dB lower and the power consumption of the radial fan is 70% of the axial fan leading to significant savings in fuel consumption.
Technical Paper

A Comparative Analysis and Novel Powertrain Topology for FCEVs, Integrating Ultra-Capacitor and Batteries

2024-01-16
2024-26-0168
This paper addresses challenges in current Fuel Cell Stack Buses and presents a novel Fuel Cell Electric Vehicle Bus (FCEV-Bus) powertrain that combines fuel cells, ultra-capacitors, and batteries to enhance performance and reliability. Existing Fuel Cell Stack Buses struggle with responsiveness, power fluctuations, and cost-efficiency. The FCEV-Bus powertrain uses a Fuel Cell stack as the primary power source, ultra-capacitors for quick power response, and batteries for addressing power variations. Batteries also save costs in certain cases. This combination optimizes power management, improves system efficiency, and extends the FCEV-Bus's operational life. In conclusion, this paper offers an innovative solution to overcome traditional fuel cell system limitations, making FCEV-Buses more efficient and reliable for potential wider adoption.
Technical Paper

A Comparative Analysis of Techniques for Electric Vehicle Battery Prognostics and Health Management (PHM)

2011-09-13
2011-01-2247
Batteries are widely used as storage devices and they have recently gained popularity due to their increasing smaller sizes, lighter weights and greater energy densities. These characteristics also render them suitable for powering electric vehicles. However, a key gap exists in that batteries are solely used as storage devices with a lack of information flow. Next-generation battery technologies will constitute the enabling tools that would lead to information-rich batteries, thus allowing the transparent assessment of a battery's health as well as the prediction of a battery's remaining-useful-life (RUL) and its subsequent impact on vehicle mobility. Various methods and techniques have been employed to predict battery RUL in order to improve the accuracy of the State of Charge (SoC) estimation.
Technical Paper

A Comparative Analysis of WHR System in HD Engines Using Conventional Diesel Combustion and Partially-Premixed Combustion

2012-09-24
2012-01-1930
In the truck industry there is a continuous demand to increase the efficiency and to decrease the emissions. To acknowledge both these issues a waste heat recovery system (WHR) is combined with a partially premixed combustion (PPC) engine to deliver an efficient engine system. Over the past decades numerous attempts to increase the thermal efficiency of the diesel engine has been made. One such attempt is the PPC concept that has demonstrated potential for substantially increased thermal efficiency combined with much reduced emission levels. So far most work on increasing engine efficiency has been focused on improving the thermal efficiency of the engine while WHR, which has an excellent potential for another 1-5 % fuel consumption reduction, has not been researched that much yet. In this paper a WHR system using a Rankine cycle has been developed in a modeling environment using IPSEpro.
Technical Paper

A Comparative Analysis of a Rigid Bicycle Model with an Elastic Bicycle Model for Small Trucks

2011-04-12
2011-01-0240
The planar rigid bicycle model is one of the most popular models used in vehicle dynamics. It has widely been used in studying vehicle handling characteristics and designing steering control system for vehicles. This paper analyses a modified dynamic model called the "Elastic Bicycle Model." This model improves upon the classical bicycle model by taking into account the flexibility of the vehicle frame by using concepts from the Euler beam theory. Complete set of the resulting dynamic equations of this model are presented. Non-dimensional versions of the equations are used to investigate the steady state response of the model. Finally, the results of the response study obtained by modeling a small truck with an elastic model and the classical bicycle model are presented. These include the steady state solutions as function of different parameters as well as a transient solution in response to a saw-tooth steering input and a step input. Octave® has been used for simulation purpose.
Technical Paper

A Comparative Investigation of Filter Performance Under Laboratory and Field Conditions

1986-04-01
860735
The Standard Multipass (Beta) Filter Method (ISO 4572) has been a highly recognized and widely accepted test throughout industry since its introduction in the early 1970's. In the past decade, the Beta Method has indeed made a major contribution in assisting users in selecting filters to meet system design requirements. However, many complaints have been voiced by users that filters normally produce a lower particle removal efficiency under field applications than they do during laboratory tests. Research results from work carried out at the Fluid Power Research Center at Oklahoma State University indicate that the degradation of the filtration (Beta) ratio in service depends mainly on the filter's retentivity characteristic. This paper highlights the theoretical basis of the Epsilon Rating Method and the concept of retentivity. Most important, the paper uses these concepts to correlate filter performance between laboratory tests and field operation.
Technical Paper

A Comparative Study between Abrasion Techniques to Improve the Adhesion of Rubber and Metal Bond for Commercial Vehicle Applications

2021-09-22
2021-26-0253
Engine mounts are an integral part of the vehicle that helps in reducing the vibrations generated from the engine. Engine mounts require a simple yet complicated amalgamation of two very different materials, steel and rubber. Proper adhesion between the two is required to prevent any part failure. Therefore, it becomes important that a comprehensive study is done to understand the mating phenomenon of both. A good linking between rubber and metal substrate is governed by surface pretreatment. Various methodologies such as mechanical and chemical are adopted for the same. This paper aims to present a comparative study as to which surface pretreatment has an edge over other techniques in terms of separation force required to break the bonding between the two parts. The study also presents a cost comparison between the techniques so that the best possible technique can be put to use in the commercial vehicle industry.
Technical Paper

A Comparative Study of Automotive System Fatigue Models Processed in the Time and Frequency Domain

2016-04-05
2016-01-0377
The objective of this paper is to demonstrate that frequency domain methods for calculating structural response and fatigue damage can be more widely applicable than previously thought. This will be demonstrated by comparing results of time domain vs. frequency domain approaches for a series of fatigue/durability problems with increasing complexity. These problems involve both static and dynamic behavior. Also, both single input and multiple correlated inputs are considered. And most important of all, a variety of non-stationary loading types have been used. All of the example problems investigated are typically found in the automotive industry, with measured loads from the field or from the proving ground.
Technical Paper

A Comparative Study of Hydraulic Hybrid Systems for Class 6 Trucks

2013-04-08
2013-01-1472
In order to reduce fuel consumption, companies have been looking at hybridizing vehicles. So far, two main hybridization options have been considered: electric and hydraulic hybrids. Because of light duty vehicle operating conditions and the high energy density of batteries, electric hybrids are being widely used for cars. However, companies are still evaluating both hybridization options for medium and heavy duty vehicles. Trucks generally demand very large regenerative power and frequent stop-and-go. In that situation, hydraulic systems could offer an advantage over electric drive systems because the hydraulic motor and accumulator can handle high power with small volume capacity. This study compares the fuel displacement of class 6 trucks using a hydraulic system compared to conventional and hybrid electric vehicles. The paper will describe the component technology and sizes of each powertrain as well as their overall vehicle level control strategies.
Technical Paper

A Comparative Study of Vehicle Handling Characteristics of Commercial Vehicle with Innovative Nonlinear Stiffness Mono-Leaf Suspension & Parabolic Spring Suspension through Simulation

2024-01-16
2024-26-0057
In recent years due to significant increased cost of raw material, fuel and energy, vehicle cost is increased. As vehicle cost is one of the major factors that attracts prospective buyers, it has created specific demand for low weight and low-cost components than traditional components with better performance to meet customer expectations. Suspension is one of the critical aggregates where lot of material is used and reduction in weight tends to give lot of cost benefit. As suspension system derives vehicle’s handling performance, it has to be ensured that handling performance of vehicle is maintained the same or made better while reducing weight of the suspension. Advancements in simulation capabilities coupled with manufacturing technology has enabled development non-traditional leaf springs. One of such springs is mono-leaf spring without shackle. This type of leaf spring provides advantages such as low weight and nonlinear stiffness.
Technical Paper

A Comparison Between Micromachined Piezoresistive and Capacitive Pressure Sensors

1997-11-17
973241
Hundreds of millions of micromachined, piezoresistive Manifold Absolute Pressure (MAP) sensors have been produced to reduce pollution and improve fuel efficiency in engine control systems. Other vehicle applications for micromachined pressure sensors include monitoring turbo pressure, barometric pressure, fuel tank leakage, fuel rail pressure and tire pressure. Exhaust gas recirculation and even door compression for side impact detection are employing micromachined silicon pressure sensors. Piezoresistive pressure sensors have dominated the automotive market to date. Practical micromachined capacitive pressure sensors have recently been developed and could replace the piezoresistive sensor in many applications. This paper will examine the advantages of both pressure sensing technologies, and discuss applications that an inexpensive capacitive pressure sensor will open up.
Technical Paper

A Comparison Of The Dynamic Performance Of A U.S. And A European Heavy Vehicle

1988-09-01
885111
Despite the general similarity of U.S. and European heavy trucks, there are differences in design properties that affect braking and turning performance. A European tractor-semitrailer was studied for the purpose of comparing its properties to those of U.S. vehicles and assessing the comparative performance. Mass, suspension, and braking system properties of the European tractor and semitrailer were measured in the laboratory and on the proving ground. Turning and braking performance qualities were evaluated by computer simulation and by experimental tests. In turning performance the European combination had a 9 percent advantage in rollover threshold, compared to a generic U.S. vehicle with properties that were in the midrange of U.S. design practice. Higher suspension roll stiffness and higher chassis weight on the European tractor and semitrailer accounted for the higher threshold.
Technical Paper

A Comparison between Two Different Computer Simulations in Measuring the Vehicle/Pedestrian Impact

1982-02-01
820171
This paper presents the analytical results of two different computer simulations of the vehicle pedestrian impact; PROMETHEUS 2 and the MacLaughlin/Daniel (MACDAN) models. The results presented illustrate the simularity and differences between the two models and accuracy of both to predict the actual occurrance. Also presented is a discussion relative to the modeling techniques of obtaining data for the pedestrian. This presentation illustrates the scaling techniques and actual data obtained in order to accurately simulate the pedestrian.
Technical Paper

A Comparison of Braking Performance of Asbestos, Non-Asbestos, and Semi-Metallic Friction Material

1990-10-01
902272
To date, no definitive work to quantify and compare the braking rating horsepower relationships between vehicles equipped with brake assemblies containing asbestos, non-asbestos, and semi-metallic friction material has been completed. This paper will report the results of a brake fade evaluation performed on a 34,000-lb. GVW vehicle in accordance with SAE J880 Brake System Rating Test Code Procedures and has quantified braking horsepower, fade temperature resistance, thermal response temperature rise, lining wear, and drum wear.
X