Refine Your Search

Search Results

Technical Paper

A Diesel Oxidation Catalyst for Exhaust Emissions Reduction

1993-11-01
932958
The authors used a mass spectrometer to determine an SOF reduction mechanism of a diesel oxidation catalyst. The results indicate that SOF reduction lies in the catalytic conversion of high molecular organic matter to low molecular organic matter. And unregulated emissions are also reduced through this conversion. It is also found that the SOF reduction performance is highly dependent up on the condition of the wash coat. There is some limitation to improving diesel oxidation catalyst performance because of the sulfur content found in diesel fuel. Finally, the authors have determined what we think are the specifications of the presently best catalytic converter.
Technical Paper

A Digital Computer Method for the Prediction of Braking Performance of Trucks and Tractor-Trailers

1973-02-01
730181
The simulation of the longitudinal performance of trucks and articulated vehicles requires careful attention to tandem axle dynamics, the brake system model, and the tire model. The approach which was taken to these problems in a recently developed digital simulation is given. Results for the braking performance of an articulated vehicle and a straight truck are compared to empirical data. In addition, simulation results are given for the articulated vehicle equipped with a simple antiskid system.
Technical Paper

A Digital Computer Method for the Prediction of the Directional Response of Trucks and Tractor-Trailers

1974-02-01
740138
It has long been recognized by vehicle dynamicists that tire properties are of utmost importance in the determination of vehicle handling. Trucks and tractor-trailers are no exception; thus, to provide a reasonable simulation of commercial vehicle handling, careful attention must be paid to the representation of the mechanics of the tire-road interface. In this paper, a newly developed simulation of commercial vehicles is discussed, with special consideration given to the modeling of the tire-road interface. Comparisons are also presented which show a high degree of correlation between commercial vehicle test data and simulation results for steady turn and braking-in-a-turn maneuvers.
Technical Paper

A Direct Design Method for High Pressure Ratio Centrifugal Compressor Impeller

1987-07-01
871390
The paper describes a simple, modified, direct method for the design of high pressure ratio centrifugal compressor impellers, using a prescribed relative velocity distribution. Based on certain simplifying assumptions, the equations of equilibrium are written in terms of the relative velocity components in the radial, axial and tangential directions. These were then solved in a step by step manner along the mean streamline to give the channel shape. An example impeller is shown, which was designed using this method, its geometric proportions appear to be acceptable.
Technical Paper

A Direct Method for Designing Fuel Filler Door with Torsional Spring

2002-11-18
2002-01-3122
A direct method is developed for designing a vehicle fuel filler door with torsional spring. The design parameters include the door's geometrical parameters and spring dimensions. The design requirements are based on the finger force curve during closing and opening, and the bending stress in the spring. An example is included to demonstrate the effectiveness of the new method.
Journal Article

A Direct Yaw Control Algorithm for On- and Off-Road Yaw Stability

2011-04-12
2011-01-0183
Models for off-road vehicles, such as farm equipment and military vehicles, require an off-road tire model in order to properly understand their dynamic behavior on off-road driving surfaces. Extensive literature can be found for on-road tire modeling, but not much can be found for off-road tire modeling. This paper presents an off-road tire model that was developed for use in vehicle handling studies. An on-road, dry asphalt tire model was first developed by performing rolling road force and moment testing. Off-road testing was then performed on dirt and gravel driving surfaces to develop scaling factors that explain how the lateral force behavior of the tire will scale from an on-road to an off-road situation. The tire models were used in vehicle simulation software to simulate vehicle behavior on various driving surfaces. The simulated vehicle response was compared to actual maximum speed before sliding vs. turning radius data for the studied vehicle to assess the tire model.
Technical Paper

A Discussion of the Information Required on Spur and Helical Gear Drawings

1984-09-01
841087
This paper presents a method of specifying the essential information for detailing the geometry of an external involute profiled spur or helical gear tooth. Internal gears are not included for reasons stated in the paper. It assumes that the reader is familiar with basic gear design terms and concepts.
Technical Paper

A Discussion of the Performance Evaluation of Time Synchronization Algorithms for Networked Control Systems by Means of Model and Simulation

2014-09-30
2014-36-0382
With the growing complexity and integration of systems as satellites, automobiles, aircrafts, turbines, power controls and traffic controls, as prescribed by SAE-ARP-4754A Standard, the time de-synchronization can cause serious or even catastrophic failures. Time synchronization is a very important aspect to achieve high performance, reliability and determinism in networked control systems. Such systems operate in a real time distributed environment which frequently requires a consistent time view among different devices, levels and granularities. So, to guarantee high performance, reliability and determinism it is required a performance evaluation of time synchronization of the overall system. This time synchronization performance evaluation can be done in different ways, as experiments and/or model and simulation.
Technical Paper

A Distributed Processor Approach for Marine Shift/Throttle Control

1994-09-01
941708
Several factors have driven the development of various electronic marine shift/throttle control systems in recent years. The benefits of marine electronic shift/throttle systems are increased cycle life, reduced maintenance requirements, and decreased installation concerns. Design considerations include selection of a microprocessor system, communication between nodes, operator feedback, and protocols for various mode selections. A recent development in marine electronic technology uses a distributed microprocessor approach that eliminates the negative factors associated with mechanical controls while actually improving operator feedback. The system's serial communication also allows for expansions into intelligent systems applications. This technology shows promise for use in industrial, automotive, and military applications.
Technical Paper

A Distributed Sensor for Sensing Dynamic Deflections

1998-09-14
981966
A distributed sensor is created to sense the rate of change in deflection of beam-like structures such as crane booms. This sensor will be useful in electrohydraulic compensation of boom deflections. The sensor is made of an array of strain-sensitive segments such as strain gages or piezoelectric film. In this example, segments of piezoelectric film convert strains on the surface of a vibrating beam into electrical outputs. These outputs are connected to low impedance signal conditioners. The output of the signal conditioners are then interpolated with a weighting vector that incorporates Lagrange polynomials, specified boundary conditions, and the desired location(s) of measurement. A simple linear combiner circuit combines the electrical outputs into the deflection velocity at the desired points.
Technical Paper

A Downhill Brake Strategy Focusing on Temperature and Wear Loss Control of Brake Systems

2013-09-24
2013-01-2372
Aiming at achieving the economy and safety of downhill brake process (running downward along a long slope at a constant velocity) of commercial vehicles, an integrated control strategy of the main brake system and auxiliary brake systems is proposed. Based on Electronic Controlled Braking System (EBS), the strategy distributes braking force to each brake system and each axle according to the thermodynamic feature of them and the wear loss of each brake lining, in order to achieve economy at the premise of safety. A simulation is conducted based on MATLAB/Simulink and TruckSim. Simulation results show that the strategy proposed could control the temperature of each brake system at a rational value, and the balanced wear loss of brake linings is facilitated, thus, the safety and economy of downhill brake is ensured.
Technical Paper

A Drag-Reduction Prediction Model for Truck Platoons

2024-04-09
2024-01-2548
Truck platooning is an emerging technology that exploits the drag reduction experienced by bluff bodies moving together in close longitudinal proximity. The drag-reduction phenomenon is produced via two mechanisms: wake-effect drag reduction from leading vehicles, whereby a following vehicle operates in a region of lower apparent wind speed, thus reducing its drag; and base-drag reduction from following vehicles, whereby the high-pressure field forward of a closely-following vehicle will increase the base pressure of a leading vehicle, thus reducing its drag. This paper presents a physics-guided empirical model for calculating the drag-reduction benefits from truck platooning. The model provides a general framework from which the drag reduction of any vehicle in a heterogeneous truck platoon can be calculated, based on its isolated-vehicle drag-coefficient performance and limited geometric considerations.
Technical Paper

A Driver Assistance System for Improving Commercial Vehicle Fuel Economy

2013-01-09
2013-26-0018
Commercial vehicle operators and governments around the world are looking for ways to cut down on fuel consumption for economic and environmental reasons. Two main factors affecting the fuel consumption of a vehicle are the drive route and the driver behavior. The drive route can be specified by information such as speed limit, road grade, road curvature, traffic etc. The driver behavior, on the other hand, is difficult to classify and can be responsible for as much as 35% variation in fuel consumption. In this work, nearly 600,000 miles of drive data is utilized to identify driving behaviors that significantly affect fuel consumption. Based on this analysis, driving scenarios and related driver behaviors are identified that result in the most efficient vehicle operation. A driver assistance system is presented in this paper that assists the driver in driving more efficiently by issuing scenario specific advice.
Technical Paper

A Dual - Reductant HC LNC Approach to Commercial Vehicle Tier 4 Final Solutions

2011-09-13
2011-01-2203
Stringent global emissions legislations demand effective NOx reduction strategies for both the engine as well as the aftertreatment. Diesel applications have previously applied Lean NOx Catalysts (LNCs) [1, 2], but their reduction efficiency and longevity have been far less than that of the competing ammonia-based SCR systems, such as urea [3]. A catalyst has been developed to significantly reduce NOx emissions, approaching 60% with ULSD and exceeding 95% with E85. Both thermal and sulfur aging are applied, as well as on-engine aging, illustrating resilient performance to accommodate necessary life requirements. A robust system is developed to introduce both ULSD from the vehicle's tank as well as E85 (up to 85% ethanol with the balance being gasoline) from a moderately sized supplemental tank, enabling extended mileage service intervals to replenish the reductant, as compared with urea, particularly when coupled with an engine-out based NOx reduction technology, such as EGR.
Technical Paper

A Dual Fuel Injector for Diesel Engines

1985-09-01
851584
The authors designed and produced a new dual fuel injector that allows two different kinds of fuel to be injected. This injector contains both a throttle type nozzle and a hole type which are located coaxially. The injection timing as well as the fuel quantity can be controlled individually. The running test using two lines of gas oil brought a good reduction of NOx and exhaust smoke. The experiment using gas oil and alcohol also brought a satisfactory reduction of exhaust emission.
Technical Paper

A Dual-Fuel Model of Flame Initiation and Propagation for Modelling Heavy-Duty Engines with the G-Equation

2023-09-29
2023-32-0009
We propose a novel dual-fuel combustion model for simulating heavy-duty engines with the G-Equation. Dual-Fuel combustion strategies in such engines features direct injection of a high-reactivity fuel into a lean, premixed chamber which has a high resistance to autoignition. Distinct combustion modes are present: the DI fuel auto-ignites following chemical ignition delay after spray vaporization and mixing; a reactive front is formed on its surroundings; it develops into a well-structured turbulent flame, which propagates within the premixed charge. Either direct chemistry or the flame-propagation approach (G- Equation), taken alone, do not produce accurate results. The proposed Dual-Fuel model decides what regions of the combustion chamber should be simulated with either approach, according to the local flame state; and acts as a “kernel” model for the G- Equation model. Direct chemistry is run in the regions where a premixed front is not present.
Technical Paper

A Dual-Use Enterprise Context for Vehicle Design and Technology Valuation

2004-03-08
2004-01-1588
Developing a new technology requires decision-makers to understand the technology's implications on an organization's objectives, which depend on user needs targeted by the technology. If these needs are common between two organizations, collaboration could result in more efficient technology development. For hybrid truck design, both commercial manufacturers and the military have similar performance needs. As the new technology penetrates the truck market, the commercial enterprise must quantify how the hybrid's superior fuel efficiency will impact consumer purchasing and, thus, future enterprise profits. The Army is also interested in hybrid technology as it continues its transformation to a more fuel-efficient force. Despite having different objectives, maximizing profit and battlefield performance, respectively, the commercial enterprise and Army can take advantage of their mutual needs.
Technical Paper

A Dynamic Model for the Rolling Resistance Considering Thermal States and Conditions

2024-04-09
2024-01-2296
Planning for charging in transport missions is vital when commercial long-haul vehicles are to be electrified. In this planning, accurate range prediction is essential so the trucks reach their destinations as planned. The rolling resistance significantly influences truck energy consumption, often considered a simple constant or a function of vehicle speed only. This is, however, a gross simplification, especially as the tire temperature has a significant impact. At 80 km/h, a cold tire can have three times higher rolling resistance than a warm tire. A temperature-dependent rolling resistance model is proposed. The model is based on thermal networks for the temperature at four places around the tire. The model is tuned and validated using rolling resistance, tire shoulder, and tire apex temperature measurements with a truck in a climate wind tunnel with ambient temperatures ranging from -30 to 25 °C at an 80 km/h constant speed.
Technical Paper

A Facility for the Measurement of Heavy Truck Chassis and Suspension Kinematics and Compliances

2004-10-26
2004-01-2609
This paper will present an overview of a new facility capable of measuring the kinematic and compliance (K&C) properties of heavy trucks. In this facility, the vehicle is positioned on the test rig and evaluated as a complete vehicle under normal loading conditions. The test rig can accommodate heavy trucks and tractors in two-axle or three-axle configurations. Kinematic and compliance characteristics of the front and rear suspensions and the steering system are evaluated as a function of vertical suspension deflection and roll, and as a function of longitudinal driving and braking forces and lateral cornering forces applied at the tire contact patch. A description of the test rig, including layout, instrumentation, actuators, and controls will be presented. The test methodology and a description of the test results will also be presented.
X