Refine Your Search

Search Results

Journal Article

Vehicle Demonstration of 2 Stroke Engine Brake in a Heavy Duty Truck

2016-09-27
2016-01-8061
Heavy duty valvetrains have evolved over the last 20 years with the integration of engine braking into the valvetrain. Jacobs Vehicle Systems have developed the High Power Density (HPD) engine brake that increases retarding powe, especially at low engine speed. The system works by converting the engine from a 4 stroke during positive power into a 2 stroke for retarding power. This more than doubles the retarding power at cruise engine speeds reducing the need to downshift in order to control the vehicle, compensates for reduction in natural vehicle retarding due to aerodynamic and friction enhancements, and enables the same vehicle retarding power with a smaller displacement engine as engine downsizing becomes prevalent. This paper describes lessons learnt during a recent vehicle demonstration project undertaken by Jacobs including performance, durability, integration with the engine powertrain, controls development, calibration, management of air system and transient operation.
Technical Paper

Examination of Detroit AssuranceⓇ 4.0 Video Radar Decision Unit (VRDU) Records for Use in Crash Analysis

2023-04-11
2023-01-0009
The Daimler Detroit AssuranceⓇ 4.0 collision mitigation system is able to assist a driver in various aspects of safely operating their vehicle. One capability is the Active Brake Assist (ABA), which uses the Video Radar Decision Unit (VRDU) to communicate with the front bumper-mounted radar to provide information about potential hazards to the driver. The VRDU may warn the driver of potential hazards and apply partial or full braking, depending on the data being gathered and analyzed. The VRDU also records event data when an ABA event occurs. This data may be extracted from the VRDU using Detroit DiagnosticLink software. This paper presents an overview of the VRDU functionality and examines aspects of VRDU data such as the range and resolution of data elements, the synchronicity or timing of the recorded data, and application of the data for use in the analysis of crashes.
Technical Paper

Vehicle Dynamics Modeling of Commercial Vehicle Steer Axle Tire Disablements at Highway Speeds

2023-04-11
2023-01-0665
There have been many studies regarding the stability of vehicles following a sudden air loss event in a tire. Previous works have included literature reviews, full-scale vehicle testing, and computer modeling analyses. Some works have validated physics-based computer vehicle simulation models for passenger vehicles and other works have validated models for heavy commercial vehicles. This work describes a study wherein a validated vehicle dynamics computer model has been applied to extrapolate results to higher event speeds that are consistent with travel speeds on contemporary North American highways. This work applies previously validated vehicle dynamics models to study the stability of a five-axle commercial tractor-semitrailer vehicle following a sudden air loss event for a steer axle tire. Further, the work endeavors to understand the analytical tire model for tires that experience a sudden air loss.
Technical Paper

Vehicle Control Development - Converting a Medium-Duty Commercial Truck into a Battery Electric Vehicle

2024-04-09
2024-01-2047
The transition towards electrification in commercial vehicles has received more attention in recent years. This paper details the conversion of a production Medium-Duty class-5 commercial truck, originally equipped with a gasoline engine and 10-speed automatic transmission, into a battery electric vehicle (BEV). The conversion process involved the removal of the internal combustion engine, transmission, and differential unit, followed by the integration of an ePropulsion system, including a newly developed dual-motor beam axle that propels the rear wheels. Other systems added include an 800V/99 kWh battery pack, advanced silicon carbide (SiC) inverters, an upgraded thermal management system, and a DC fast charging system. A key part of the work was the development of the propulsion system controls, which prioritized drivability, NVH suppression, and energy optimization.
Journal Article

Development of DPF regeneration system under all operating conditions for generators

2022-01-09
2022-32-0050
In order to resolve global atmospheric environmental issues, latest diesel engines for industrial machinery are required to reduce the emission of harmful gases such as carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NOx), and particulate matter (PM). For this reason, it is essential to mount exhaust gas after treatment devices such as diesel particulate filter (DPF) and diesel oxidation catalyst (DOC) on diesel engine. Engines mounted DPF must carry out DPF regeneration that burns and removes PM. Generator engine has characteristic of being operated for a long time under light load condition with low exhaust temperature which is difficult for DPF regeneration. In addition, generating white smoke and inlet face clogging of DOC are caused by accumulated soot containing HC at the DOC when operating engine continuously under light load condition.
Technical Paper

Expanded Characterization of Force-Deflection Properties of Vehicle-to-Vehicle Systems

2017-03-28
2017-01-1417
This paper reports on seventy additional tests conducted using a mechanical device described by Bonugli et al. [4]. The method utilized quasi-static loading of bumper systems and other vehicle components to measure their force-deflection properties. Corridors on the force-deflection plots, for various vehicle combinations, were determined in order to define the system stiffness of the combined vehicle components. Loading path and peak force measurements can then be used to evaluate the impact severity for low speed collisions in terms of delta-v and acceleration. The additional tests refine the stiffness corridors, previously published, which cover a wide range of vehicle types and impact configurations. The compression phase of a low speed collision can be modeled as a spring that is defined by the force-deflection corridors. This is followed by a linear rebound phase based on published restitution values [1,5].
Journal Article

Design and Analysis of Lifting Pusher Drop Axle for Heavy Commercial Vehicle

2017-04-11
2017-01-9176
Lifting axles are auxiliary axles that provide increased load carrying capacity in heavy commercial vehicles. Lift axle gives better fuel efficiency as well as it reduces the operational costs by means of increasing the loading carrying capacity. These axles are raised when the vehicle is in unloaded condition, thus increasing the traction on remaining wheels and reducing the tire wear which in turn lower down the maintenance cost of the vehicle. Lifting height and force requires to lift the whole mechanism and are two main considerable factors to design the lifting axle mechanism. Although in India currently, the use of lift mechanism of single tire with continuous axle is more common. But in the case of pusher axle, continuous axle is unable to lift more after certain height because of the draft angle of the propeller shaft, and single tire axle which has less load carrying capacity up to 6T (Tons).
Technical Paper

Optimal Control Co-Design of a Parallel Electric-Hydraulic Hybrid Vehicle

2024-04-09
2024-01-2154
This paper presents an optimal control co-design framework of a parallel electric-hydraulic hybrid powertrain specifically tailored for heavy-duty vehicles. A pure electric powertrain, comprising a rechargeable lithium-ion battery, a highly efficient electric motor, and a single or double-speed gearbox, has garnered significant attention in the automotive sector due to the increasing demand for clean and efficient mobility. However, the state-of-the-art has demonstrated limited capabilities and has struggled to meet the design requirements of heavy-duty vehicles with high power demands, such as a class 8 semi-trailer truck. This is especially evident in terms of a driving range on one battery charge, battery charging time, and load-carrying capacity. These challenges primarily stem from the low power density of lithium-ion batteries and the low energy conversion efficiency of electric motors at low speeds.
Technical Paper

1D-3D CFD Investigations to Improve the Performance of Two-Stroke Camless Engine

2024-04-09
2024-01-2686
The transportation sector still depends on conventional engines in many countries as the alternative technologies are not mature enough to reduce carbon footprints in society. The four-stroke diesel engines, primarily used for heavy-duty applications, need either high intake boosting or a large bore to produce higher torque and power output. There is an alternative where a four-stroke engine operated in two-stroke mode with the help of a fully flexible variable valve actuation (VVA) system can achieve similar power density without raising the intake boosting or engine size. A fully flexible VVA is required to control the valve events (lift, timing, and durations) independently so that the four-stroke events can be completed in one cycle. In this study, 1D-3D CFD coupled simulations were performed to develop a gas exchange process for better air entrapment in the cylinder and evacuate the exhaust products simultaneously.
Technical Paper

Load-Sensing Gear Pumps

1998-09-14
982063
The application of open-circuit, load-sensing hydraulic systems in industrial, marine, and mobile equipment has long provided many advantages to machine designers, manufacturers, distributors, dealers, and end-user customers. Typically, the flow for such systems is provided by variable-displacement piston or vane pumps. However, in some applications, fixed-displacement gear pumps with integral load-sensing valve packages offer a more economical, and (depending on machine duty cycle and other parameters) a more efficient system. This paper will provide an overview of the design and advantages of these units, discuss the essential criteria which must be considered during the “fixed-displacement versus variable-displacement” pump selection process, and describe some typical applications.
Technical Paper

The New Toyota 2.4L L4 Turbo Engine with 8AT and 1-Motor Hybrid Electric Powertrains for Midsize Pickup Trucks

2024-04-09
2024-01-2089
Toyota has developed a new 2.4L L4 turbo (2.4L-T) engine with 8AT and 1-motor hybrid electric powertrains for midsize pickup trucks. The aim of these powertrains is to fulfill both strict fuel economy and emission regulations toward “Carbon Neutrality”, while exceeding customer expectations. The new 2.4L L4 turbocharged gasoline engine complies with severe Tier3 Bin30/LEVIII SULEV30 emission regulations for body-on-frame midsize pickup trucks improving both thermal efficiency and maximum torque. This engine is matched with a newly developed 8-speed automatic transmission with wide range and close step gear ratios and extended lock-up range to fulfill three trade-off performances: powerful driving, NVH and fuel economy. In addition, a 1-motor hybrid electric version is developed with a motor generator and disconnect clutch between the engine and transmission.
Technical Paper

Human Subject Kinematic Response to Low-Speed Sideswipes Involving a Truck Tractor

2021-05-04
2021-01-5043
The kinematic response of vehicle occupants involved in tractor-to-passenger vehicle sideswipes was examined through a series of 13 crash tests. Each test vehicle and its occupants were instrumented with accelerometer arrays to measure and quantify the impact severity at various inter-vehicular angles and impact velocities. The passenger vehicle was occupied by a volunteer test subject in the driver and right-front passenger positions. The impact angle was varied between 3° and 11° to produce a sideswipe collision between the front bumper, steered wheel, and side components of the tractor and the side panels of the struck vehicle. The passenger vehicles were struck at different locations along their longitudinal axis at impact velocities between 3 mph and 11.5 mph. Accelerations were measured at the lumbar, cervicothoracic, and head regions of the driver and right-front passenger of the struck vehicle and the tractor driver.
Technical Paper

Testing of Heavy Truck Advanced Driver Assistance Systems and Crash Mitigation Systems

2023-04-11
2023-01-0010
Modern heavy vehicles may be equipped with an Advanced Driver Assistance System (ADAS) designed to increase highway safety. Depending on the vehicle or manufacturer, these systems may detect objects in a driver’s blind spot, provide an alert when the ADAS determines that the vehicle is leaving its lane of travel without the use of a turn signal, or notify the driver when certain road signs are detected. ADASs also include adaptive cruise control, which adjusts the vehicle’s set cruise speed to maintain a safe following distance when a slower vehicle is detected ahead of the truck. In addition, the ADAS may have a Collision Mitigation System (CMS) component that is designed to help drivers respond to roadway situations and reduce the severity of crashes. CMSs typically use radar or a combination of radar and optical technologies to detect objects such as vehicles or pedestrians in the vehicle’s path.
Technical Paper

Development of a High Power, Low Emissions Heavy Duty Hydrogen Engine

2024-04-09
2024-01-2610
The hydrogen (H2) internal combustion engine (ICE) is emerging as an attractive low life-cycle carbon powertrain configuration for applications that require high power, high duty cycle operation. Owing to the relative ease of conversion of heavy duty (HD) diesel ICEs to H2 and the potential for low exhaust emissions, H2 ICEs are expected to play a strong role in rapidly decarbonizing hard-to-electrify markets such as off-road, rail, and marine. The conversion of HD diesel ICEs to spark ignited H2 with port fuel injection is typically accompanied by a de-rating of engine power and torque. This is due to several fuel- and system-related challenges, including the high risk of abnormal combustion resulting from the low auto-ignition energy threshold of H2, and boost system requirements for highly dilute operation that is used to partially mitigate this abnormal combustion risk.
Technical Paper

Evaluation of Engine and Aftertreatment Concepts for Proposed Tier 5 off-Road Emission Standards

2024-04-09
2024-01-2628
The global push towards reducing green-house gas and criteria pollutant emissions is leading to tighter emission standards for heavy-duty engines. Among the most stringent of these standards are the California Air Resource Board (CARB) 2024+ HD Omnibus regulations adopted by the agency in August 2020. The CARB 2024+ HD Omnibus regulations require up to 90% reduction in NOx emissions along with updated compliance testing methods for on-road heavy-duty engines. Subsequently, the agency announced development of new Tier 5 standards for off-road engines in November 2021. The Tier 5 standards aim to reduce NOx/PM emissions by 90%/75% respectively from Tier 4 final levels, along with introduction of greenhouse gas emission standards for CO2/CH4/N2O/NH3. Furthermore, CARB is also considering similar updates on compliance testing as those implemented in 2024+ HD Omnibus regulations including, low-load cycle, idle emissions and 3-bin moving average in-use testing.
Technical Paper

A Study of In-Service Truck Weights

2017-03-28
2017-01-1424
Collision reconstruction often involves calculations and computer simulations, which require an estimation of the weights of the involved vehicles. Although weight data is readily available for automobiles and light trucks, there is limited data for heavy vehicles, such as tractor-semitrailers, straight trucks, and the wide variety of trailers and combinations that may be encountered on North American roads. Although manufacturers always provide the gross vehicle weight ratings (GVWR) for these vehicles, tare weights are often more difficult to find, and in-service loading levels are often unknown. The resulting large uncertainty in the weight of a given truck can often affect reconstruction results. In Canada, the Ministry of Transportation of Ontario conducted a Commercial Vehicle Survey in 2012 that consisted of weight sampling over 45,000 heavy vehicles of various configurations.
Technical Paper

Evaluation of the Heavy Vehicle Event Data Recorder for the Freightliner New Cascadia with Detroit Diesel Engines

2019-04-02
2019-01-0636
For model year 2018, Freightliner introduced the New Cascadia model to their lineup of Class 8 trucks. Testing of the Freightliner New Cascadia with Detroit Diesel engines was conducted to evaluate the accuracy of the reported event data contained in the engine Electronic Control Units (ECUs) for these trucks. The testing showed that there are occurrences in DDEC Reports, specifically in the Last Stop Record and Hard Braking event data, when the time between successive event data points was two seconds rather than the reported one second interval. The occurrence of the two-second anomaly was not always present in a Last Stop Record or Hard Braking event. When the two-second anomaly was present in the event data, it occurred randomly and no pattern to when this anomaly occurs was determined. No method was found to be able to detect the presence of this anomaly from the review of a Last Stop Record or Hard Braking event.
X