Refine Your Search

Search Results

Technical Paper

Vehicle Braking System Calculation and Simulation Software Platform

2012-09-24
2012-01-1895
The brake performance is one of the most important performances in the automotive active safety, and it is the main measure of automotive active safety. Thus, to develop a platform for the braking system is quite significant. Based on the object-oriented technology, the platform for braking system is developed by making use of Visual C++ 6.0 development tool. By using the VC++ development tool and doing secondary development on other softwares, the software possesses powerful features, such as brake plan selection, performance calculation, parametric modeling, finite element analysis and kinematics simulation, etc. An initial brake system can be designed, calculated and analyzed all in one. The living instance shows that the platform has friendly user interfaces, powerful functions and it can improve the precision and efficiency of brake design. The platform has been of great applied value and can also positively promote the design automation of vehicle's braking system.
Technical Paper

Brake System Design Calculation for Light Military Tracked Vehicle

2012-09-24
2012-01-1896
Braking system is one of the most important system in the vehicle. In this paper, a general methodology for the design of braking system for a light military tracked vehicle is discussed in detail. It may be considered as a guide for predicting the values of various braking terms (such as brake force, brake torque, system pressure required, pedal force etc.) for the given inputs. The effects on these braking terms due to the variation of the inputs are also analyzed. A complete study of different types of brake actuation system has been done so that the appropriate one can be selected. A methology has been derived for braking system design for tracked vehicle and a program is written for the same.
Technical Paper

Effect of Steering System Compliance on Steered Axle Tire Wear

2012-09-24
2012-01-1909
Subject paper focuses primarily on non uniform tire wear problem of front steered wheels in a pickup model. Cause and effect analysis complemented with field vehicle investigations helped to identify some of the critical design areas. Investigation revealed that steering geometry of the vehicle is undergoing huge variations in dynamic condition as compared to initial static setting. Factors contributing to this behavior are identified and subsequently worked upon followed by a detailed simulation study in order to reproduce the field failures on test vehicles. Similar evaluation with modified steering design package is conducted and results are compared for assessing the improvements achieved. In usual practice, it is considered enough if Steering Geometry parameters are set in static condition and ensured to lie within design specifications.
Technical Paper

Robust Optimal Control of Vehicle Lateral Motion with Driver-in-the-Loop

2012-09-24
2012-01-1903
Dynamic “Game Theory” brings together different features that are keys to many situations in control design: optimization behavior, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In previous studies, it was shown that vehicle stability can be represented by a cooperative dynamic/difference game such that its two agents (players), namely, the driver and the vehicle stability controller (VSC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the VSC command is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degree of freedom (DOF) vehicle handling performance model is put into discrete form to develop the game equations of motion. This study focus on the uncertainty in the inputs, and more specifically, the driver's steering input.
Technical Paper

DOE for Non Linear Structural Analysis of ROPS (Rollover Protective Structure)

2012-09-24
2012-01-1902
Rollover Protective Structures (ROPSs) are used in off-highway vehicles to protect operator in case of accidents involving overturning of vehicle. The role of a ROPS is to absorb the energy of Rollover without violating the protected operator zone. The performance of a ROPS is determined by its ability to absorb energy under prescribed loading conditions. The performance depends upon design parameters, such as tube thicknesses, material grades, ROPS tube cross-sections, etc., that define the structure. In this paper, we describe a method that uses Design of Experiments (DOE) to determine the correlation between the performance of a ROPS for a small tractor and its critical design parameters. The correlation results are discussed for two types of loading conditions, namely “front push loading” and “side push loading”. The correlation obtained is further used to identify the optimal design parameters for maximum energy absorption under constraints on allowable deflections.
Technical Paper

Steering Linkage Induced Vehicle Pull during Straight Line Braking

2012-09-24
2012-01-1916
The vehicle pull (sideways) is a complex outcome of many parameters in an automobile vehicle. This is mainly due to steering, suspension, brake, wheels and chassis parameters. The road conditions like road camber also plays an important role in vehicle pull behavior. All efforts are put in design and manufacturing processes to maintain controlled vehicle pull in normal driving condition. Even though normal vehicle pull seems to be in acceptance limit (subjectively), its intensity increases many folds at the time of harsh braking. In these kind of panic situations where driver firmly holds on the steering wheel, it is expected that the vehicle should stop without deviating too much sideways from its intended straight line path to avoid any kinds of accidents. This work is an outcome of systematic study carried out to understand the root cause of brake pull as a field complaint on current production vehicles and adopting best possible solutions to minimize the brake pull.
Technical Paper

Experimental and Numerical Study of Rollover Crashworthiness of a Coach Body Section

2012-09-24
2012-01-1900
The good mobility and large carrying capacity promote the popularity of intercity coach in mass transit, especially in the long distance passenger transport nowadays. However, accidents related to coach and bus usually involve large casualties. Higher risk of fatalities is exhibited in rollover than the other coach accident types. In order to protect the occupants when a rollover accident occurs, coach structure must have sufficient strength to resist the impact loads. This paper presents a rollover test of an intercity coach body section using both numerical simulation and experimental testing to investigate its rollover crashworthiness in accordance with ECE R66. A full scale coach body section is manufactured and a tilting bench is designed and fabricated. Displacement transducers and accelerometer are equipped to record the time history of superstructure deformation and impact acceleration. And the FE model was developed accordingly.
Technical Paper

Multi-Physics Modeling of a Cab Suspension System with Fluid Filled Mounts

2012-09-24
2012-01-1912
This paper presents a novel 6-DOF multi-physics model of a cab suspension system. The model consists of a cab with six degrees of freedom supported by four fluid filled viscous mounts. In the literature, to the best of the authors' knowledge, all 6-DOF cab models have simplified fluid filled mounts as spring damper combinations. In its best case, a nonlinear stiffness relationship is allowed in the simplified models to capture the nonlinear behavior of the mounts and include geometric constraints and hard-stops. The novel model presented in this paper, however, includes a multi-physics model of the mounts. Each mount is represented by a molded assembly, two fluid chambers, a fluid track that connects the two chambers, and a gas chamber. Each mount can be pressurized or vented. A simple cavitation model is also used as an indicator of fluid cavitation in each mount.
Technical Paper

Improvements in the Fatigue Assessment of Large Welded Structures Using the Nominal Stress Approach

2012-09-24
2012-01-1910
By the fatigue assessment of large welded steel structures such as construction machines structures, the calculation engineer is confronted with a difficulty: the local stress approaches with fictitious notch radius that are very accurate cannot be used on the global structure because of the current computer limitations. Only a nominal stress can be estimated on the whole structure. The accuracy of the current commercial code methods that are using the nominal stress approach is not satisfying for most of the cases. The major problems are the following: only one SN-Curve (FAT-class) can be chosen for a weld the stress used for the calculation is based on the critical plane concept, not taking into account the direction of the weld (anisotropy of notch effects) and the geometrical weld parameters (e.g. weld throat thickness and penetration) choice of the FAT-class when the structural detail is not available in the IIW guideline.
Technical Paper

Hydropneumatic Suspension Design for Light Military Tracked Vehicle

2012-09-24
2012-01-1911
In this paper hydropneumatic suspension system design methodology for light military tracked vehicle is discussed in detail. A guide to locate the major impact factor & its effect on the system level design is demonstrated. Spring & damping characteristics of hydropneumatic suspension have significant bearing on the tracked vehicle mobility characteristics. A methodology has been derived to optimize the kinematics of the suspension system by optimizing the load transferring leverage ratio resulting in enhanced system life. The paper also discusses the analytical method used for prediction of spring & damping characteristics and the factors affecting them.
Technical Paper

Heavy-Duty Off-Road Vehicle Power-Pack Design for Assembly and Maintenance

2012-09-24
2012-01-2056
The designers of heavy-duty off-road vehicles have been facing increasing pressure to reduce the cost and time required for assembly and maintenance. While the requirement to reduce assembly times is mainly an OEM driven objective, the requirement to reduce maintenance times is frequently driven by the customer. The design team is usually faced with the challenge of balancing functional requirements with what are often viewed as wish lists of easy assembly and maintenance, under the pressure of ever shorter development cycles. As a result, vehicle maintainability and ease of assembly are often overlooked early in the design cycle which can lead to less than desired results. This paper explores the design objectives and resultant solutions which were developed in the creation of the power-pack of a heavy-duty off-road vehicle.
Technical Paper

An Over-Temperature Protection Control Strategy for Electric Power Steering Motor

2012-09-24
2012-01-2057
The EPS motor will be over-heated if large current lasts for a long time, which will decline the performance of EPS motor and even lead to irreparable damage. So the over-temperature protection control should be conducted in order to protect the components of EPS system, especially the durability of EPS motor. In this paper, the motor temperature was estimated according to the environmental temperature and the current of motor armature, and then the EPS assist current was limited based on the estimated temperature of motor to ensure that the EPS motor had a good working condition. So the over-temperature protection control for motor can be realized without increasing the EPS system components. Finally the control strategy for over-temperature protection was conducted in a vehicle with EPS system and its performance was verified.
Technical Paper

Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks

2012-09-24
2012-01-2052
In the United States, an intercity long-haul truck averages approximately 1,800 hrs per year for idling, primarily for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel across the entire long-haul fleet [1]. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling [2]. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working on solutions to reduce idling fuel use through the CoolCab project. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining the cab occupant comfort. NREL conducted an experimental test program at their Vehicle Testing and Integration Facility in collaboration with Volvo Trucks, Aearo Technologies LLC / E-A-R Thermal Acoustic Systems - a 3M company, 3M Corporation, and Dometic Environmental Corporation.
Technical Paper

Heuristic Approach for Part Number Minimization during New Product Development in Automobile Industry

2012-09-24
2012-01-2054
The goal of any Lean organization is to understand customer value and to focus its efforts to continuously increase it. Lean applies to every business and every process and so is applicable for New Product Development (NPD) in Automobile industry, where the major output is the vehicle part numbers. Part numbers are generated based on the variant tree finalized. Customer requirements, benchmarks and organization assets such as lessons learnt and historical information provide input to the variant tree. Parts numbers for a particular model are generated during the concept Bill of Materials (BOM) stage and after which it exists during the complete product life cycle. Part number generation includes considerable effort by the design team, the validation team, and also includes overheads on the Product Life cycle Management (PLM) system.
Technical Paper

Innovative Dense Lightweight Design for On-Board Hydrogen Storage Tank

2012-09-24
2012-01-2061
The hydrogen economy envisioned in the future requires safe and efficient means of storing hydrogen fuel for either use on-board vehicles, delivery on mobile transportation systems or high-volume storage in stationary systems. The main emphasis of this work is placed on the high -pressure storing of gaseous hydrogen on-board vehicles. As a result of its very low density, hydrogen gas has to be stored under very high pressure, ranging from 350 to 700 bars for current systems, in order to achieve practical levels of energy density in terms of the amount of energy that can be stored in a tank of a given volume. This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs.
Technical Paper

An Adaptive Vehicle Stability Control Algorithm Based on Tire Slip-Angle Estimation

2012-09-24
2012-01-2016
Active safety systems have become an essential part of today's vehicles including SUVs and LTVs. Although they have advanced in many aspects, there are still many areas that they can be improved. Especially being able to obtain information about tire-vehicle states (e.g. tire slip-ratio, tire slip-angle, tire forces, tire-road friction coefficient), would be significant due to the key role tires play in providing directional stability and control. This paper first presents the implementation strategy for a dynamic tire slip-angle estimation methodology using a combination of a tire based sensor and an observer system. The observer utilizes two schemes, first of which employs a Sliding Mode Observer to obtain lateral and longitudinal tire forces. The second step then utilizes the force information and outputs the tire slip-angle using a Luenberger observer and linearized tire model equations.
Technical Paper

Temperature Difference Control Strategy and Flow Field Uniformity Analysis of Ni-Mh Power Battery Package

2012-09-24
2012-01-2018
The nonuniformity property of the temperature field distribution will not only affect on the battery charging and discharging performance but also its lifetime. In this paper the elementary structural design is implemented for Ni-Mh battery package and the corresponding test platform is constructed from the point of view of temperature difference control strategy, the test results show that the present structural design schemes can effectively restrain temperature difference enlargement among the battery stacks. Through the application of adopting the flow field uniformity method to control temperature difference, and flow field optimization inside the battery package, it is found that the flow field velocity change quantity ΔV is gradually reduced as the increase of the afflux hood angle Ak and air vent width Da, and the difference of battery temperature is relatively lower, which denoting that the corresponding relationship can be created based on test data.
Technical Paper

Vehicle Duty Cycle Characteristics for Hybrid Potential Evaluation

2012-09-24
2012-01-2023
A range of cycle characteristics have been used to estimate the hybrid potential for vehicle duty cycles including characteristic acceleration, aerodynamic velocity, kinetic intensity, stop time, etc. These parameters give an indication of overall hybrid potential benefits, but do not contain information on the distribution of the available braking energy and the hybrid system power required to capture the braking energy. In this paper, the authors propose two new cycle characteristics to help evaluate overall hybrid potential of vehicle cycles: P50 and P90, which are non-dimensional power limits at 50% and 90% of available braking energy. These characteristics are independent of vehicle type, and help illustrate the potential hybridization benefit of different drive cycles. First, the distribution of available braking energy as a function of brake power for different vehicle cycles and vehicle classes is analyzed.
Technical Paper

Selection of Gear Ratio for Smooth Gear Shifting

2012-09-24
2012-01-2005
Manual transmissions are characterized by gear ratios that are selectable by locking selected gear pairs to the output shaft inside the transmission. Top gear is selected to get a maximum speed and is limited by the engine power, speed and the fuel economy. Lower gears are selected to get maximum speed at maximum gradient. Lower gears are also expected to give creeping speed to avoid usage of clutch and brake in city traffic. Selection of intermediate gears is such that it provides a smoother gear shift. Gear spacing is done in geometric progression. Spacing between the higher gears is usually closer than in the lower gears because drivers shift more often between the lower gears. This is opposed to the conventional idea of progressive spacing where higher gears had more space between them. An objective method is provided for selecting gear ratios for use in vehicle transmission having multiple selectable gears.
Technical Paper

Lead-Carbon Hybrid Battery/Supercapacitor Performance in Commercial Vehicle No-Idle Applications

2012-09-24
2012-01-2019
As fuel costs and anti-idling legislation become more prevalent, the life cycle cost of the energy storage component of no-idle systems is becoming a critical consideration. Current systems employ up to four AGM lead-acid batteries, with a one year standard warranty. OEMs have reported higher than acceptable warranty claim levels and are interested in examining the potential advantages of alternative storage technologies. The use lead-carbon asymmetric hybrid battery/supercapacitor energy storage in the no-idle system application is examined through modified SAE J2185 cycle testing and other means - as these battery products have significantly improved rechargeability (charge acceptance) and longer life (up to 4x higher cycle life in deep cycle applications). The performance improvement is expected to provide shorter recharge times and reduced warranty claims. The technology could potentially offer means to a lower capacity alternator, thus reducing cost.
X