Browse Publications Technical Papers 2021-01-0200
2021-04-06

Electro-Thermal Control on Power Electronic Converters: A Finite Control Set Model Predictive Control Approach 2021-01-0200

With the increasing attention towards electric vehicles (EV), power electronics technology has become more prominent on vehicular systems. EV requires compact energy conversion and control technology to improve system efficiency and optimize the sizing of power components. Therefore, it is important to reduce thermal losses, while supplying an adequate amount of power to different EV devices. Silicon carbide (SiC)-based power semiconductors provide performance improvements such as lower power losses, higher junction temperature and higher switching frequency compared to the conventional silicon (Si)-based switching devices. High-frequency switching is preferred for power converters to minimize the necessity of passive filters; however, high-frequency switching causes additional thermal stress on semiconductor switches due to the increase in switching losses. The degradation of switching devices in power converters are primarily related to the junction temperature. One method to improve the lifetime of semiconductors is to control the module junction temperature by controlling switching losses in the switching state, while providing power quality in the required limits and maintaining voltage stability. This concept is referred to as active thermal management. This paper illustrates the Finite Control Set Model Predictive Control (FCS-MPC) approach on how electrical performance can be preserved while providing electro-thermal management for the SiC-based switching devices on three-level three-phase power converter to improve system efficiency and reliability.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
X