1993-07-01

Design and Performance of Space Station Photovoltaic Radiators 932151

The design and performance of the Space Station Freedom Photovoltaic (PV) Power Module Thermal Control System radiators is presented. The PV Radiator is of a single phase pumped loop design using liquid ammonia as the coolant. Key design features are described, including the base structure, deployment mechanism, radiator panels, and two independent coolant loops. The basis for a specific mass of 7.8 kg/m2 is discussed, and methods of lowering this number for future systems are briefly described.
Key performance parameters are also addressed. A summary of test results and analysis is presented to illustrate the survivability of the radiator in the micrometeoroid and orbital debris environment. A design criterion of 95% probability of no penetration of both fluid loops over a 10 year period is shown to be met. Methods of increasing the radiator survivability even further are presented. Thermal performance is also discussed, including a comparison of modeling predictions with existing test results. Degradation in thermal performance due to exposure to atomic oxygen and ultraviolet radiation in the low Earth orbit environment is presented. The structural criteria to which the radiator is designed are also briefly addressed. Finally, potential design improvements are discussed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X