Refine Your Search

Search Results

Technical Paper

Transient Spray Characteristics of a Direct-Injection Spark-Ignited Fuel Injector

1997-02-24
970629
This paper describes the transient spray characteristics of a high pressure, single fluid injector, intended for use in a direct-injection spark-ignited (DISI) engine. The injector was a single hole, pintle type injector and was electronically controlled. A variety of measurement diagnostics, including full-field imaging and line-of-sight diffraction based particle sizing were employed for spray characterization. Transient patternator measurements were also performed to obtain temporally resolved average mass flux distributions. Particle size and obscuration measurements were performed at three locations in the spray and at three injection pressures: 3.45 MPa (500 psi), 4.83 Mpa (700 psi), and 6.21 MPa (900 psi). Results of the spray imaging experiments indicated that the spray shapes varied with time after the start of injection and contained a leading mass, or slug along the center line of the spray.
Technical Paper

Cycle-Resolved PDA Measurement of Size-Classified Spray Structure of Air-Assist Injector

1997-02-24
970631
Very high data rate Phase Doppler Measurements were carried out in order to demonstrate the spray characteristics at each cycle and how each injection differed from each other. Conventional time-averaged data analysis can hardly provide information to analysis cyclic variation of spray formation and droplet dynamics so that a cycle-resolved PDA system was developed in the study. A direct gasoline injector for two-stroke marine engine was used for the experiment. For data analysis, droplet dynamics and characteristics of different droplet diameter were examined. The results show mat cycle variation of injector was remarkable, the maximum spray tip velocity differed from 63 m/s to 93 m/s even for the consecutive injection. The data rate obtained was over 40 kHz (Max: 85 kHz) and bin width was carefully examined to show the spray collision to air and entrained air motion.
Technical Paper

Analysis of a Direct Injected Gasoline Engine

1997-02-24
970624
The principle strategy, the development emphasis, and the investigation parameters of a DI gasoline engine are discussed. Several different combustion systems are briefly described and one system where the spark plug is located near the fuel injector is investigated. In addition, the influence of different operating parameters are studied. Some reasons for the improvement in the efficiency of a DI gasoline engine are shown with the help of thermodynamic analysis and simulation calculations. These show that at a constant operating point (engine speed = 2000 rpm, bmep = 2 bar) there is a reduction of the fuel consumption of 23% at unthrottled conditions in comparison to the homogeneous stoichiometric operation. In particular, the reduction of the pumping and heat losses and the reduction of the exhaust gas energy are responsible for this fuel consumption reduction.
Technical Paper

Comparison Between Air-Assisted and Single-Fluid Pressure Atomizers for Direct-Injection SI Engines Via Spatial and Temporal Mass Flux Measurements

1997-02-24
970630
Two distinct atomization strategies are contrasted through the measurement of time and spatially dependent mass flux. The two systems investigated include a pressure atomizer (6.9 MPa opening pressure) and an air-assist atomizer. Both systems have potential for use in direct injection spark ignition engines. The mass flux data presented were obtained using a spray patternator that was developed to allow phased sampling of the spray. The temporal mass related history of the spray was reconstructed as volume versus time plots and interpolated mass flux contour plots. Results indicate substantial differences in the distribution of both mass and mass flux in space and time for the two injection systems. For example, the pressure atomizer at high mass delivery rates produced a spray that collapsed into a dispersed cylindrical shape while at low rates, generated a hollow cone structure.
Technical Paper

A Review of Mixture Preparation and Combustion Control Strategies for Spark-Ignited Direct-Injection Gasoline Engines

1997-02-24
970627
The current extensive revisitation of the application of gasoline direct-injection to automotive, four-stroke, spark-ignition engines has been prompted by the availability of technological capabilities that did not exist in the late 1970s, and that can now be utilized in the engine development process. The availability of new engine hardware that permits an enhanced level of computer control and dynamic optimization has alleviated many of the system limitations that were encountered in the time period from 1976 to 1984, when the capabilities of direct-injection, stratified-charge, spark-ignition engines were thoroughly researched. This paper incorporates a critical review of the current worldwide research and development activities in the gasoline direct-injection field, and provides insight into new areas of technology that are being applied to the development of both production and prototype engines.
Technical Paper

Numerical Prediction of Charge Distribution in a Lean Burn Direct-Injection Spark Ignition Engine

1997-02-24
970626
Three-dimensional computation of the flow field and fuel spray in a DISC engine is performed using a modified version of KIVA-II. A special valve treatment technique is employed to simulate multiple moving valves without excessive efforts for body-fitted grid generation. The test engine is a 4-valve 4-stroke gasoline engine with a pent-roof head and a hollow-cone spray by a high-pressure swirl injector. The injection strategy is divided into two categories, ‘early’ and ‘late’ injection to optimize the combustion process. A spray-wall impingement model based on a single droplet experiment is implemented to consider both ‘early’ and ‘late’ injection case. Parametric studies are performed with respect to the load, injection timing, duration and position, spark-plug position, and the combustion chamber geometry. Results show that the current numerical analysis is capable of representing the spray motion and mixture formation in an operating engine qualitatively.
Technical Paper

Modeling Sulfuric Acid Condensation in Diesel Engine EGR Coolers

1997-02-24
970636
In order to meet future emissions standards, diesel engines may require the use of exhaust gas recirculation (EGR). The NOx-bsfc trade-off can be improved by using an exhaust-to-engine coolant heat exchanger. If care is not taken, the durability of the cooler may be compromised by sulfuric acid condensation from the exhaust gas. This paper presents a computer model for predicting the dew-point, acid condensation rate, and condensate composition inside an EGR cooler. Effects of fuel sulfur content, pass arrangement, surface fouling, coolant temperature, and engine operating point on acid condensation were identified by applying the model to a prototype heat exchanger.
Technical Paper

A Correlative Model to Predict Autoignition Delay of Diesel Fuels

1997-02-24
970638
A constant volume combustion chamber has been used to study the influence on autoignition delay, of operating conditions, such as pressure and temperature. Experiments have been carried out on ten different Diesel fuels in order to show the effects of fuel nature. The results obtained allowed us to establish and validate a correlation law, enabling the prediction of autoignition delay. The proposed relationship generalizes the Wolfer's law to any fuel, by taking into account three specific characteristics: its cetane number, its paraffin content and its kinematic viscosity.
Technical Paper

Advanced Computational Methods for Predicting Flow Losses in Intake Regions of Diesel Engines

1997-02-24
970639
A computational methodology has been developed for loss prediction in intake regions of internal combustion engines. The methodology consists of a hierarchy of four major tasks: (1) proper computational modeling of flow physics; (2) exact geometry and high quality and generation; (3) discretization schemes for low numerical viscosity; and (4) higher order turbulence modeling. Only when these four tasks are dealt with properly will a computational simulation yield consistently accurate results. This methodology, which is has been successfully tested and validated against benchmark quality data for a wide variety of complex 2-D and 3-D laminar and turbulent flow situations, is applied here to a loss prediction problem from industry. Total pressure losses in the intake region (inlet duct, manifold, plenum, ports, valves, and cylinder) of a Caterpillar diesel engine are predicted computationally and compared to experimental data.
Technical Paper

A Simulation Analysis of the Effect of Governor Technical Characteristics and Type on the Transient Performance of a Naturally Aspirated IDI Diesel Engine

1997-02-24
970633
A transient analysis simulation program is developed for studying the response of an indirect injection, naturally aspirated, diesel engine after a rapid increase in load when this is equipped with various types of indirect acting governors. Analytical expressions are presented for the better simulation of engine mechanical friction, inertia moments and heat loss to the walls under transient conditions, governor dynamics for both the sensing element and the servopiston, soot emissions and the fuel pump operation. Various types of governor sensing elements (i.e. mechanical, electrical, two-pulse) and feedbacks (i.e. unity and vanishing) for the servomechanism are studied. Explicit diagrams are given to show how each combination of governor type and technical parameters (i.e. mass and number of flyweights, geometrical dimensions, amplification factors) affects the speed response as well as the speed droop and the recovery period of the particular engine.
Technical Paper

Size-Classified Droplet Dynamics and its Slip Velocity Variation of Air-Assist Injector Spray

1997-02-24
970632
The droplet characteristics of the air-assisted gasoline injector was investigated. A Phase Doppler technique was used to measure droplet diameter and its velocity. The size-classes technique was employed and found to be the best way to understand what kind of droplet is existing in shear flow induced mushroom vortex at spray shell. The detail spray characteristics near nozzle was discussed and the double shell structure was found. The droplets of less than 20 μm can be entrained into mushroom vortex, while the larger of over 30 μm penetrates straight to downstream. The slip velocity and relative Reynolds number were used in data analysis in order to understand the momentum transfer occurrence region due to strong drag force. The spray animation was demonstrated with the ensembled / size-classified droplet, which was found to be the powerful tool to understand spray formation and dispersion process.
Technical Paper

Multi-Zone Combustion Modelling for the Prediction of Pollutants Emissions and Performance of DI Diesel Engines

1997-02-24
970635
In the past years various models have been proposed for the modelling of performance and pollutants emissions from DI diesel engines. These models range from complicated 3D detailed ones up to simple two zone phenomenological ones. The latter ones although simple offer solutions in engine study and are widely used due to their low computational cost and simplicity. In the present work a multi-zone model for direct injection diesel engines is presented together with its application on a direct injection diesel engine located at the authors laboratory. Multi-zone models usually fail to predict adequately both pollutants emissions and performance and thus focus mainly on pollutants emissions. Of course this is not acceptable since the formation of pollutants is strongly related to the combustion mechanism. In the present work an effort has been made to overcome this problem and predict both performance and emissions throughout the engine operating range.
Technical Paper

An Integrated Transient Analysis Simulation Model Applied in Thermal Loading Calculations of an Air-Cooled Diesel Engine Under Variable Speed and Load Conditions

1997-02-24
970634
A comprehensive transient analysis simulation model is used for the calculation of diesel engine performance under variable speed and load conditions. The analysis includes a detailed description of engine subsystems under transient conditions, thus accounting for the continuously changing character of transient operation, simulating among others the fuel injection, transient mechanical friction, heat losses to the walls and governor operation. The results of engine performance, at every time step during the transient event, are used as inputs for the formulation of thermal boundary conditions, which are needed for the calculation in a parallel way of the thermal transients propagating inside the engine structure.
Technical Paper

Multivariable Control of Engine Idle Speed

1997-02-24
970611
A multivariable Linear Quadratic Gaussian (LQG) control algorithm is developed for engine idle speed control. Difficulties posed by inherent engine non-linearity, time varying engine events and delays are considered. A non-linear engine model used to design and test the control algorithm is described. Control engineers can use the engine model and control algorithm as a basis for further work in this area. A dynamic feedforward compensation which dramatically reduces disturbance deviations is also described. Finally, the effects of typical production air-to-fuel ratio control on the idle speed control system are evaluated.
Technical Paper

Model Identification for the A/F Path of an SI Engine

1997-02-24
970612
Modern model-based control schemes and their application on different engines need mathematical models for the various dynamic subsystems of interest. Here, the fuel path of an SI engine is investigated. When the engine speed and the throttle angle are kept constant, the fuel path is excited only by the fuel injected. Taking the NO concentration of the exhaust gas as a measure for the air/fuel ratio, models are derived for the wall-wetting dynamics, the gas mixture, as well as for the air/fuel ratio sensor. When only the spark advance is excited, the gas flow dynamics can be studied. A very fast NO measurement device is used as reference. Its time constant is below the segment time of one single cylinder (180° crank angle for a 4-cylinder engine), therefore its dynamics are much faster than the time constants of the systems investigated. A model structure considering the muliplexing effects of the discrete operation of an engine is given for the fuel path of a BMW 1.8 liter engine.
Technical Paper

On-Line Identification of Time Delay in the Fuel Path of an SI Engine

1997-02-24
970613
The dynamics of the fuel-path subsystem of an SI engine, between fuel injection command signal and measured air-to-fuel ratio, is modeled approximately by a series connection of a first-order low-pass filter and a time delay element. The three parameters involved in this approximation, i.e., the time constant and the gain factor of the low-pass filter as well as the time delay, depend on the operating point of the engine. In order to design a gain-scheduled controller for the entire operating range of the engine, the parameters are identified for a number of operating points. For the automation of the parameter identification of all operating points desired, an on-line identification based on the recursive least-squares method is used. The algorithm for the decision of whether to increase or decrease the integer part of the current estimated time delay, which is a multiple of the sampling period, is based on an estimation of the fractional part of the time delay at each point.
Technical Paper

A High Resolution Real-Time Model of a Diesel Engine

1997-02-24
970614
Today diesel engines are controlled by electronic control units (ECU's), performing complex functions. New developed control algorithms should already be tested under real-time conditions in the laboratory before they are applied to the real engine. Hardware-in-the-loop simulation (HIL) is a powerful tool for development and test of the control algorithms implemented in the ECU's. Modern diesel ECU's are able to react to rotary oscillations of the crankshaft within a work cycle in order to control idling and running smoothness by a cylinder-individual variation of the start of delivery and the injection time. As a consequence also the simulator has to be able to generate torque oscillations with a resolution adapted to the sample rate of the ECU. The paper describes a high resolution real-time model which was designed by expanding a steady state model by a parallel thermodynamic model with a simplified structure.
Technical Paper

A Monolithic Integrated Solution for MAP Applications

1997-02-24
970608
A monolithic sensing solution for manifold absolute pressure (MAP) is presented. This work includes examination of design, fabrication, temperature compensation, packaging and electromagnetic compatibility (EMC) testing of the fully integrated monolithic sensor. The circuit uses integrated bipolar electronics and conventional IC processing. The amplification circuit consists of three op-amps, seven laser trimmable resistors, and other active and passive components. Also discussed is a summary of an automotive application MAP sensor general specification, test methods, assembly, packaging, reliability and media testing for a single chip solution.
Technical Paper

An Integrated Silicon Bulk Micromachined Barometric Pressure Sensor for Engine Control Unit and External Mount

1997-02-24
970610
An Integrated Barometric Absolute Pressure Sensor (IBAP) solution for barometric pressure sensing is presented here. The IBAP is a silicon bulk micromachined monolithic pressure sensor. This work includes an examination of the design, fabrication, temperature compensation, and testing aspects. In addition, options and issues related to the mounting of the IBAP device will be presented. Two techniques, including surface mounting the sensor on the engine control unit (ECU) PWB are discussed.
Technical Paper

Enhanced Performance Silicon Pressure Sensors for Automotive Applications

1997-02-24
970609
An automotive pressure transducer incorporating an ultra flexible mixed signal CMOS ASIC and a well established bulk-micromachined sensing element is presented demonstrating enhanced performance over the demanding automotive temperature specification. Limited statistical knowledge of both the sensor and ASIC performance is shown to lead to much simplified calibration algorithms during high volume manufacture yielding low overall transducer errors. Results are presented to demonstrate both the enhanced performance and ASIC flexibility. The advantages of custom design of a signal processing ASIC to a targeted range of pressure sensor die is clearly demonstrated.
X