Refine Your Search

Search Results

Technical Paper

Robotic Drilling: A Review of Present Challenges

2024-03-05
2024-01-1921
In numerous industries such as aerospace and energy, components must perform under significant extreme environments. This imposes stringent requirements on the accuracy with which these components are manufactured and assembled. One such example is the positional tolerance of drilled holes for close clearance applications, as seen in the “EN3201:2008 Aerospace Series – Holes for metric fasteners” standard. In such applications, the drilled holes must be accurate to within ±0.1 mm. Traditionally, this required the use of Computerised Numerical Control (CNC) systems to achieve such tight tolerances. However, with the increasing popularity of robotic arms in machining applications, as well as their relatively lower cost compared to CNC systems, it becomes necessary to assess the ability of robotic arms to achieve such tolerances. This review paper discusses the sources of errors in robotic arm drilling and reviews the current techniques for improving its accuracy.
Technical Paper

Sea-Level Characterization of Electrically Assisted Turbocharger for Use on Aviation Diesel Engine

2024-03-05
2024-01-1914
Airborne compression-ignition engine operations differ significantly from those in ground vehicles, both in mission requirements and in operating conditions. Unique challenges exist in the aviation space, and electrification technologies originally developed for ground applications may be leveraged to address these considerations. One such technology, electrically assisted turbochargers (EATs), have the potential to address the following: increase the maximum system power output, directly control intake manifold air pressure, and reignite the engine at altitude conditions in the event of an engine flame-out. Sea-level experiments were carried out on a two-liter, four-cylinder compression-ignition engine with a commercial-off-the-shelf EAT that replaced the original turbocharger. The objective of these experiments was to demonstrate the technology, assess the performance, and evaluate control methods at sea level prior to altitude experimentation.
Technical Paper

Integrating MIL-STD Requirements into SysML Projects: A Unified Approach

2024-03-05
2024-01-1945
In support of developing complex systems, integrating requirements from various source standards, such as the Military Standard (MIL-STD) series and others, presents a significant challenge. This paper explores the development of Model-Based System Engineering (MBSE) Systems Modeling Language (SysML) projects that incorporate MIL-STD requirements. The study begins by defining the critical need for integrating multiple standards into MBSE projects, emphasizing the importance of adhering to MIL-STD requirements when invoked by the customer. The study further defines the limitations inherent in managing standards independently and propose a unified approach within a SysML-based framework. The research introduces a systematic methodology for mapping MIL-STD requirements and other relevant standards onto SysML constructs, ensuring traceability and consistency throughout the system development lifecycle.
Technical Paper

Considerations for Requirements and Specifications of a Digital Thread in Aircraft Data Life Cycle Management

2024-03-05
2024-01-1946
The aircraft lifecycle involves thousands of transactions and an enormous amount of data being exchanged across the stakeholders in the aircraft ecosystem. This data pertains to various aircraft life cycle stages such as design, manufacturing, certification, operations, maintenance, and disposal of the aircraft. All participants in the aerospace ecosystem want to leverage the data to deliver insight and add value to their customers through existing and new services while protecting their own intellectual property. The exchange of data between stakeholders in the ecosystem is involved and growing exponentially. This necessitates the need for standards on data interoperability to support efficient maintenance, logistics, operations, and design improvements for both commercial and military aircraft ecosystems. A digital thread defines an approach and a system which connects the data flows and represents a holistic view of an asset data across its lifecycle.
Technical Paper

Investigation of Mechanical Properties and Weld nugget Characteristics of Thermoplastics by Using Friction Stir Welding with Heat Assisted Induction Coil

2024-03-05
2024-01-1943
Friction stir welding (FSW) is a method of welding that creates a weld trail by pressing a non-consumable rotating tool with a profiled pin on the adjacent surfaces while moving transversely along the welding direction. The method was initially used with metals and alloys, but more recently, thermoplastic polymers have also been included in its application. Investigations on FSW of thermoplastic polymers made of nylon and High-density polythene (HDPE) are presented here. Weld characteristics that are like those of the base materials are attempted to be achieved. Because of their unique nature and thermal conductivity, thermoplastics FSW differs from that of metals. The use of thermoplastic materials with conventional FSW procedures presents numerous difficulties and is currently ineffective. On the weld characteristics of nylon and HDPE, statistical methods were utilized to study the impact of temperature, rotational speed, and transverse speed.
Technical Paper

Prevention of Operational Errors in Semi-Automatic Riveters by Machine Vision Systems Using Deep Learning

2024-03-05
2024-01-1944
This paper reports the development of an operation support system for production equipment using image processing with deep learning. Semi-automatic riveters are used to attach small parts to skin panels, and they involve manual positioning followed by automated drilling and fastening. The operator watches a monitor showing the processing area, and two types of failure may arise because of human error. First, the operator should locate the correct position on the skin panel by looking at markers painted thereon but may mistakenly cause the equipment to drill at an incorrect position. Second, the operator should prevent the equipment from fastening if they see chips around a hole after drilling but may overlook the chips; chips remaining around a drilled hole may cause the fastener to be inserted into the hole and fastened at an angle, which can result in the whole panel having to be scrapped.
Technical Paper

Development of Fe-SiC Complex Part of Ball Screw Assembly by Direct Metal Laser Sintering

2024-03-05
2024-01-1941
Additive manufacturing (AM) is currently the most sought-after production process for any complex shaped geometries commonly encountered in Aerospace Industries. Although, several technologies of AM do exits, the most popular one is the Direct Metal Laser Sintering (DMLS) owing to its high versatility in terms of precision of geometries of components and guarantee of highest levels of reduction in production time. Further, metallic component of any complex shape such as Gas Turbine Blades can also be developed by this technique. In the light of the above, the present work focuses on development of iron silicon carbide (Fe-SiC) complex part for ball screw assembly using DMLS technique. The optimized process parameters, hardness and wear resistance of the developed iron-SiC composite will be reported. Further, since the material chosen is a metallic composite one, the effect of SiC on the thermal stresses generated during the DMLS processing of Fe-SiC composite will also be discussed.
Technical Paper

Path Following Performance Analysis for Siemens 840 D sl Controlled Robotic Machining Platforms with Secondary Encoders

2024-03-05
2024-01-1937
Robotic arms are widely known to fall short in achieving the tolerances required when it comes to the metal machining industry, especially for the aerospace sector. Broadly speaking, two of the main reasons for that are a lack of stiffness and a lack of accuracy. Robotic arm manufacturers have responded to the lack of stiffness challenge by producing bigger robots, capable of holding high payloads (e.g., Fanuc M-2000iA/2300) or symmetric robots (e.g., ABB IRB6660). Previous research proved that depending on the application and the material being machined, lack of stiffness will still be an issue, even for structurally bigger robotic arms, due to their serial nature. The accuracy issue has been addressed to a certain extent by using secondary encoders on the robotic arm joints. The encoder enhanced robotic arm solutions tend to be expensive and prior knowledge proves that there are still limitations when it comes to achieved accuracy.
Technical Paper

AZ31-MWCNT Composites Fabricated Through Powder Metallurgy for Aerospace Applications

2024-03-05
2024-01-1938
The aerospace industry's unceasing quest for lightweight materials with exceptional mechanical properties has led to groundbreaking advancements in material technology. Historically, aluminum alloys and their composites have held the throne in aerospace applications owing to their remarkable strength-to-weight ratio. However, recent developments have catapulted magnesium and its alloys into the spotlight. Magnesium possesses two-thirds of aluminum's density, making it a tantalizing option for applications with regard to weight-sensitive aerospace components. To further enhance magnesium's mechanical properties, researchers have delved into the realm of metal matrix composites (MMCs), using reinforcements such as Alumina, Silicon carbide, Boron carbide and Titanium carbide.
Technical Paper

Computational Modelling of Hypersonic Nozzles: The Influence of Enthalpy on the Flow Thermochemistry

2024-03-05
2024-01-1935
In this work, an investigation of the enthalpy effects on the thermochemical non-equilibrium in hypersonic nozzles is performed. Three different nozzles, with different geometries and stagnation enthalpy conditions are used in this study. The three cases, two of them with stagnation enthalpy conditions of 3.3 MJ/kg and 7.56 MJ/kg, use molecular nitrogen as the testing fluid and in the third case, corresponding to the higher enthalpy condition of 23.8 MJ/kg, the fluid is partially dissociated air composed by five neutral species (N2, O2, NO, N and O). A reliable numerical model, previously validated by the authors, using non-equilibrium Navier-Stokes-Fourier equations within a density-based algorithm is here employed in the OpenFOAM framework. After an estimation of the discretization uncertainties by using the Richardson extrapolation method and Roache’s Grid Convergence Index, the results are obtained by using a sufficient independent grid for each case.
Technical Paper

Experimental Studies on Mechanical and Failure Behaviour of Single Lap Joints of Woven Jute-Hemp Fabric Reinforced Polymeric Composite Laminates

2024-03-05
2024-01-1936
In the aerospace industry, large aircrafts employ composite materials for making complex structures which not only reduces weight and cost but also reduces the number of joints. Irrespective of that joining of structures cannot be avoided and for that mechanical fasteners such as rivets and bolts are employed along with adhesive bonding. Further, in recent years natural fibers have been studied extensively for their numerous advantages and have already been made into several automotive applications. Keeping these current trends in mind an attempt is made to investigate the joining behavior of natural fiber composites experimentally. So in this study, the ultimate failure load, bearing strength and the dominating failure mode of jute-hemp fabric-reinforced polymeric composites joined using single and double-bolted configurations are studied.
Technical Paper

Telescope Baffle Mass Simulator Design Using Shape Optimization

2024-03-05
2024-01-1934
A case study of an application of Shape optimization techniques in the design of a mass simulator has been presented. A simple mass Simulator is to be designed as a replacement for a Telescope Baffle Mass for testing purposes. The simulator is made of simple plate structures like flat plates and cylindrical plates joined together. The overall mass, location of center of gravity and first few modes of the simulator need to be close to the Telescope Baffle, it is replacing. This ensures that the Simulator is a good replacement for the Telescope Baffle both in statics and dynamics performance. Shape Optimization techniques using approximate direct linearization method of MSC/Nastran software have been used to fine-tune the baseline Simulator design to achieve target properties of mass, cg, frequencies, etc.
Technical Paper

An Adapted ARP-Based Approach for the System Safety Assessment of Electric-Propulsion Thermal Runaway Hazards

2024-03-05
2024-01-1919
The global electric and hybrid aircraft market utilizing lithium-ion Energy Storage Systems (ESS) as a means of propulsion, is experiencing a period of extraordinary growth. We are witnessing the development of some of the most cutting-edge technology, and with that, some of the most complex challenges that we as an industry have ever faced. The primary challenge, and the most critical cause of concern, is a phenomenon known as a “Thermal Runaway”, in which the lithium-ion cell enters an uncontrollable, self-heating state, that if not contained, can propagate into a catastrophic fire in the aircraft. A Thermal Runaway (TR) can be caused by internal defects, damage, and/or abuse caused by an exceedance of its operational specifications, and it is a chemical reaction that cannot be stopped once the cell has reached its trigger temperature.
Technical Paper

Transforming AADL Models Into SysML 2.0: Insights and Recommendations

2024-03-05
2024-01-1947
In recent years, the increasing complexity of modern aerospace systems has driven the rapid adoption of robust Model-Based Systems Engineering (MBSE). MBSE is a development methodology centered around computational models, which are instrumental in supporting the design and analysis of intricate systems. In this context, the Architecture Analysis and Design Language (AADL) and Systems Modeling Language (SysML) are two prominent modeling languages for specifying and analyzing the structure and behavior of a cyber-physical system. Both languages have their own specific use cases and tool environments and are typically employed to model different aspects of system design. Although multiple software tools are available for transforming models from one language to another, their effectiveness is limited by fundamental differences in the semantics of each language.
Technical Paper

Verification and Validation of Model-Based Systems Requirements and Design Leveraging Formal Methods to Increase Development Assurance

2024-03-05
2024-01-1917
As model-based systems engineering is proliferating throughout the aerospace industry as a method to manage the development of complex cyber-physical systems, opportunities to leverage formal methods for verification and validation purposes are significant. As a system model described in SysML can contain the level of semantics required to define strict system requirements, it is possible to create a translation tool to generate SRL (SADL (Semantic Application Design Language) Requirements Language) to leverage ASSERT™ (Analysis of Semantic Specifications and Efficient generation of requirements-based Tests) for verification and validation of the system requirements. SADL [13] is a controlled English grammar that translates directly into OWL (Web Ontology Language) [14]. As part of the validation of the SRL requirements, ASSERT™ leverages a theorem prover to look for conflict and completeness errors.
Technical Paper

Geometry Simplification for Conjugate Heat Transfer of Electric Rotating Machines Using Computational Fluid Dynamics

2024-03-05
2024-01-1930
Geometry simplification is a critical step of performing conjugate heat transfer analysis utilizing computational fluid dynamics (CFD). This paper provides a standard methodology to simplify the geometry of electric rotating machines such as electrical generators and electrical motors (both air and liquid cooled). These machines are extremely complex in design and CFD plays an imperative role in their optimization. These machines are extensively deployed throughout aerospace and automotive industries where optimization of weight, volume, and performance is paramount especially given the current global transition to renewable energy sources and vehicle hybridization / electrification.
Technical Paper

Differentiation between Appendix O and Appendix C Icing Conditions in Flight Using the Collins Ice Differentiator System

2024-03-05
2024-01-1933
Protecting against atmospheric icing conditions is critical for the safety of aircraft during flight. Sensors and probes are often used to indicate the presence of icing conditions, enabling the aircraft to engage their ice protection systems and exit the icing cloud. Supercooled large drop icing conditions, which are defined in Appendix O of 14 CFR Part 25, pose additional aircraft certification challenges and requirements as compared to conventional icing conditions, which are defined in Appendix C of 14 CFR Part 25. For this reason, developing sensors that can not only indicate the presence of ice, but can also differentiate between Appendix O and Appendix C icing conditions, is of particular interest to the aviation industry and to federal agencies. Developing detectors capable of meeting this challenge is the focus of SENS4ICE, a European Union sponsored project.
Technical Paper

Power Transfer Protocol for Variable Frequency Aircraft Electrical Power Systems

2024-03-05
2024-01-1915
Since the early days of aviation, when an AC-type generator became a primary source of electrical power for all aircraft systems, the demand for electrical power has steadily grown. Following rapid technology and scientific advancements in the aerospace industry, the complexity and criticality of all aircraft systems have increased to the point where multiple independent and isolated electrical power sources are required. In such an environment, with two or more variable-frequency AC-type generators that can be simultaneously activated to provide electrical power to the aircraft power distribution system, a safe power transfer process becomes a major priority. This means that any two independent aircraft AC power sources with different frequencies or phase angles cannot be connected simultaneously to a common power bus.
Technical Paper

Composite Fuselage Proposal—Part 1: Static and Modal Finite Element Analysis

2024-02-27
2024-01-6000
The objective of this paper is to analyze a complete fuselage of an airplane made of composite materials. The analysis presented includes designing a 3D fuselage structure in which parameters are calculated using various stress and deformation scenarios. Static numerical results propose a composite fuselage structure to reduce stress and deformation levels by 45 and 33% compared to an equivalent (existing) aluminum fuselage. This work is to continue with specific characteristics of the composite and considerations to more realistic loading conditions (dynamism, impact, fatigue). A complete study should suggest converting flying vehicles to composites, to increase performances, minimize weights, and improve payloads.
Technical Paper

Design and Numerical Analysis of Double-Base Swirl Injector for Ethanol/Hydrogen-Peroxide Based Liquid Propellant Rocket Engine

2024-02-23
2023-01-5100
This paper presents a study of numerical cold flow analysis of double-base swirl injector design using Ansys Fluent. The study focuses on the design validation and development of double-base liquid-liquid swirl injector for Ethanol(Fuel) and Hydrogen Peroxide(Oxidizer) based liquid propellant rocket engine. The green propellant contains 80% Ethanol (C2H5OH) as fuel and 60% Hydrogen Peroxide (H2O2) as oxidizer. A comprehensive data, obtained from NASA CEARun code, of performance parameters and carbon monoxide and carbon dioxide emission of most commonly used propellant is compared with ethanol and hydrogen-peroxide based propellant is presented for reference. Secondly, the paper presents the theoretical design model of Swirl Injector, and numerical cold flow study of swirl injector model. For this the 3D models of fuel and oxidizer swirl nozzles are designed separately as per the theoretical design parameters. Poly-hexacore type fluent meshing is used to generate valid mesh.
X