Refine Your Search

Search Results

Journal Article

Unified Power-Based Analysis of Combustion Engine and Battery Electric Vehicle Energy Consumption

2022-03-29
2022-01-0532
The previously developed power-based fuel consumption theory for Internal Combustion Engine Vehicles (ICEV) is extended to Battery Electric Vehicles (BEV). The main difference between the BEV model structure and the ICEV is the bi-directional character of traction motors and batteries. A traction motor model was developed as a bi-linear function of positive and negative traction power. Another difference is that the accessories and cabin heating are powered directly from the battery, and not from the powertrain. The resulting unified model for ICEV and BEV energy consumption has linear terms proportional to positive and negative traction power, accessory power, and overhead, in varying proportions. Compared to the ICEV, the BEV powertrain has a high marginal efficiency and low overhead. As a result, BEV energy consumption data under a wide range of driving conditions are mainly proportional to net traction power, with only a small offset.
Technical Paper

Evaluating Simulation Driver Model Performance Using Dynamometer Test Criteria

2022-03-29
2022-01-0530
The influence of driver modeling and drive cycle target speed trace modification on vehicle dynamics within energy consumption simulations is studied. EPA dynamometer speed error criteria and the SAE J2951 Drive Quality Evaluation for Chassis Dynamometer Testing standard are applied to simulation outputs as proposed components of simulation validation, providing guidelines for acceptable vehicle speed outputs and allowing comparison of simulation results to reported EPA dynamometer test statistics. The combined effect of driver model tuning and drive cycle interpolation methods is investigated for the UDDS, HwFET and US06 drive cycles, with EPA-specified linearly interpolated speed trace and a PI controller driver as a baseline result.
Technical Paper

Conceptual Design Proposal for Adapting D-Cycle Technology in Agricultural Tractor Engine

2022-03-29
2022-01-0600
This paper reviews application of D-Cycle technology to compact tractor diesel engine for improving efficiency & power. The study considers design challenges that are presented for accommodating D-Cycle technology in engine. The paper also covers resolving those challenges with established technical solutions. The study focuses on modifying conventional compact 4-stroke diesel engine with the intention of keeping design changes to a minimum level for incorporating differential stroke technology. Designing of vertically splitting lightweight piston crown which can be smoothly engaged and separated from main piston body without any impact, stem rod which connects piston crown with rocker arm, split connecting rod and rocker arm which is actuated by extra actuating camshaft in addition of present valvetrain camshaft, are covered. Lubrication of additional actuating camshaft is done by extending existing oil galleries.
Technical Paper

Piston Concept, Design and Testing for Extreme High Efficiency Internal Combustion Engine Development

2022-03-29
2022-01-0598
The main objective of this work is to describe the approach used and the results achieved on test bench, specifically for the piston design and development, which supports efficiency demonstration for a new class of internal combustion engine. In this era of ICE revolution rather than evolution, although the piston function remains the same, the working boundary conditions are drastically changing, and the development time is often compressed in favor of a shorter time to market. In this paper, piston requirements, functions, design and testing results from a development program on a Heavy Duty Recuperated Split Cycle Engine are reported. This includes the strategy for a fast and cost-efficient modification of the compression/expansion ratio, the technology and the materials used for reduction of heat losses, and a thermal expansion study, which supports material selection for the structure and the thermal barrier coating, to optimize piston function.
Journal Article

A Simulation Tool for Calculation of Engine Thermal Boundary Conditions

2022-03-29
2022-01-0597
Reducing emissions and the carbon footprint of our society have become imperatives requiring the automotive industry to adapt and develop technologies to strive for a cleaner sustainable transport system and for sustainable economic prosperity. Electrified hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV) and range extender powertrains provide potential solutions for reducing emissions, but they present challenges in terms of thermal management. A key requirement for meeting these challenges is accurately to predict the thermal loading and temperatures of an internal combustion engine (ICE) quickly under multiple full-load and part-load conditions. Computational Fluid Dynamics (CFD) and thermal survey database methods are used to derive thermal loading of the engine structure and are well understood but typically only used at full-load conditions.
Technical Paper

Analysis of a Supercharged Gas Turbine Engine Concept and Preliminary Investigation of a Version Using Argon as the Working Fluid

2022-03-29
2022-01-0595
The paper presents results from a study into the potential of a complex cycle gas turbine engine, originally investigated by the Ford Motor Company for truck applications in the 1960s, and updated to gauge the possible improvements by raising the efficiencies of its constituent components from the values used in period to more modern levels. To perform this investigation, firstly a spreadsheet model was constructed and the data that Ford made available in the open literature were used to validate it. The methodology used in the model was to balance the power consumed by the compressors (and the auxiliaries where applicable) with that produced by their driving turbines, and to match the thermal power in the heat exchangers with the data provided. Using the quoted lower heating value of the diesel fuel originally used, this approach led to an accuracy in the match of brake specific fuel consumption (in terms of g/kWh) to three places of decimals.
Journal Article

Study on a Turbine Housing with Inner Insulation Structure for Rapid Catalyst Light-Off

2022-03-29
2022-01-0594
Experimental study on a turbine housing with inner insulation structure has been conducted for rapid light-off of the catalyst unit, which is located at the downstream side of turbochargers. The turbine housing with feasible inner-insulation structures has been designed and prototyped. It is referred to as the inner-insulated turbine housing. The concept of inner-insulation structures is a combination of sheet metals and insulators. The turbine housing was built using metal additive manufacturing with powder bed fusion technique. The gas stand test demonstrates the inner-insulated turbine housing under cold start-up with high temperature and idle condition to evaluate the time reduction for activation of the catalyst unit. To acquire the thermal and flow characteristic of the catalyst element, sheathed thermocouples were installed in the catalyst element.
Technical Paper

The Hybrid Engine - Challenge between GHG-Legislation, Efficiency Targets, Product Cost and Production Boundaries

2022-03-29
2022-01-0593
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining component technology with integration and industrialization requirements when heading for further significant efficiency optimization of the subsystem internal combustion engine. The requirements on the combustion engine in hybrid powertrains are quite different to those in a conventional powertrain solution. Next-generation hybrid engines, with brake thermal efficiency (BTE) targets starting from 42-43% and aiming for 45% and above within the product lifecycle, require a re-thinking of the base engine architecture of current modular engine platforms. At the same time focus on the product cost and minimized additional investment demand reuse of current production, machining and assembly facilities as far as possible.
Technical Paper

The Development of Software for Automobile Sound Modulation and Application

2022-03-29
2022-01-0611
Based on the technology of the order tracking and extraction, a software for the modulation of sound quality of automotive order sound is developed in this paper. The order analysis, the amplitude modulation of order sound in specific speed range and the calculation of the functional expression of the order sound amplitude are integrated in this software. Furthermore, a side-valve interpolation correction algorithm (SV-ICA) is proposed to solve the problem that the smooth transition of the order sound curve at endpoints cannot be guaranteed, which would result in the appearance of abnormal noise in the modulated sounds. The application of built software in constructing the automobile sounds with the sound quality of sportiness is demonstrated.
Technical Paper

Design Optimization of Engine Cooling System for Light Duty Diesel Engine for Weight and Cost Reduction Purpose

2022-03-29
2022-01-0610
Engine cooling systems for vehicles are used for cooling the engine fluids. The cooling system normally consists of following components: radiator, expansion tank, cooling fan, fan drive and shroud. The mounting structure for this system must be designed to withstand the loads that will be imposed by the vehicle operation which consists of stresses such as those caused by linear static and dynamic loading. Automotive industries perform various tests on vehicles in the end-user environment to reduce failures; these investigations are carried out on the design using finite element method (FEM). Finite element methods are being used routinely to analyze for structural behavior. Modeling is done with CATIA software, meshing is carried out with HYPERMESH software and solution is acquired using NASTRAN solver.
Technical Paper

Development of High Damping Powertrain Mount Using Thixotropic Fluid

2022-03-29
2022-01-0612
Vibration isolation performance and damping performance of the powertrain mount are important for enhancing the noise and vibration performance and the ride comfort performance of a vehicle. In the present research, attention was focused on how the ideal viscosity differs with the input frequency according to the principle of damping that occurs in hydraulic mounts. By combining the liquid column resonance phenomenon with thixotropic fluid, a technology was developed for achieving a high-level balance between low dynamic spring and high damping, which are trade-off elements in a hydraulic mount. An aqueous solution of glycol used as the base fluid was combined with clay mineral as a thixotropic agent. From the results of the viscosity measurement, it was found that as the amount of thixotropic agent added increased, the viscosity gradient increased with respect to the shear rate, but at the same time, the overall viscosity also increased.
Technical Paper

Powertrain NVH CAE Process Enhancement Using Non-linear Interaction Modelling

2022-03-29
2022-01-0615
NVH CAE is considered as one of the aspects of engine component design process. Following the best practices for CAE throughout the industry is the current trend which tend to miss the fact of improving it as per the continuously evolving component designs. Continuous improvement is necessary in existing methods and procedures to enhance CAE methodologies. Correlation of CAE models with measurement results increases stakeholders’ confidence and further allows to try out various combinations to reduce product development cycle time as well as cost. Engine components are connected with each other at periphery through bolted connection with required torque. The existing global CAE modeling practices are evolved to represent the bolt connections at the designed location. However, these practices miss the stiffness offered by the interface zone between bolts.
Technical Paper

Application of Special Rubber Compound to Avoid BSR Issues in Vehicle

2022-03-29
2022-01-0614
Today, noise perceived by the occupants is becoming an important factor driving the design standards for the design of most of the interior assemblies in an automotive vehicle. Buzz, Squeak and Rattle (BSR) is a major contributor towards the perceived noise of annoyance to the vehicle occupants. An automotive vehicle consists of many chassis assemblies which are the potential sources of BSR noise. The potential locations of critical BSR noise could be contained within such assemblies as well as across their boundaries. Engine mount design is major area where BSR noises can be heard inside cabin on various road conditions. Natural rubber is regular rubber used in engine mount applications but in this paper BSR problems are solved by changing the rubber compound i.e., NR+BR (slippery compound). Detailed case study is presented where slippery rubber compound is used which is solving BSR issue and also meeting durability targets.
Technical Paper

Research on High-Frequency Dynamic Models of Rubber Mounts with Second-Stage Isolation

2022-03-29
2022-01-0617
The rubber mount is a key component of the electric vehicle powertrain mounting system, which can reduce the vibration of the powertrain transmitted to the vehicle body. The rubber mount with second-stage isolation means that a rubber vibration isolator is added to the metal bracket of the original rubber mount. Compared with the original rubber mount, the rubber mount with second-stage isolation has smaller dynamic stiffness and better vibration isolation performance in the high-frequency range. In this paper, the static stiffness of a rubber mount with second-stage isolation is tested, and the high-frequency dynamic characteristics of the rubber mount are calculated using the finite element simulation. According to its characteristics, an equivalent mechanical model including equivalent mass is established.
Technical Paper

Multiple Engine Faults Detection Using Variational Mode Decomposition and GA-K-means

2022-03-29
2022-01-0616
As a critical power source, the diesel engine is widely used in various situations. Diesel engine failure may lead to serious property losses and even accidents. Fault detection can improve the safety of diesel engines and reduce economic loss. Surface vibration signal is often used in non-disassembly fault diagnosis because of its convenient measurement and stability. This paper proposed a novel method for engine fault detection based on vibration signals using variational mode decomposition (VMD), K-means, and genetic algorithm. The mode number of VMD dramatically affects the accuracy of extracting signal components. Therefore, a method based on spectral energy distribution is proposed to determine the parameter, and the quadratic penalty term is optimized according to SNR. The results show that the optimized VMD can adaptively extract the vibration signal components of the diesel engine. In the actual fault diagnosis case, it is difficult to obtain the data with labels.
Technical Paper

Combustion Phasing Indicators for Optimized Spark Timing Settings for Methane-Hydrogen Powered Small Size Engines

2022-03-29
2022-01-0603
In the intermediate stage towards zero-emissions, use of methane-hydrogen blends in spark ignition (SI) engines could represent an attractive application. The present work investigated the relevance of empirical base rules for choosing maximum brake torque spark timing settings when using methane-hydrogen blends. A 0D/1D model was used for investigating the optimized ignition for maximizing engine output. Calibration was performed by using in-cylinder pressure data recorded on a methane fueled small size SI engine for two-wheel applications. After adaptations of the model such as valves timing, for rendering it more representative for power generation applications, the investigation was focused on how MBT spark advance was correlated to the 50% mass fraction burned mark (CA50) and peak pressure location. The fact that they were optimized for methane was found to be essential only for high concentrations of hydrogen.
Technical Paper

Digitalization of a Climate and Altitude Simulation Test Bench for Handheld Power Tools to Automate Its Thermal Management System

2022-03-29
2022-01-0602
Mechanical systems accomplish their tasks better when enhanced with cyber technologies. With the rapidly escalating desire for high efficiency, optimization and flexibility, these physical systems ought to be integrated with cyber technologies that enhance exhaustive manipulation of resources and productivity. The gateway for such a synergetic integration can be referred to as digitalization. Details regarding the digitization of a High-altitude Simulation chamber are discussed thoroughly in this paper. The simulation chamber was originally designed and developed as a test bench to study the characteristics of alternative fuels used in the engines of handheld tools in different altitudes and thermal conditions. It encompasses all the possible realistic temperature variations with altitude raising to 3500m above sea level.
Technical Paper

Experimental Investigation of Performance of Variable Compression Ratio Engine Fueled with Pyrolised Plastic Oil and Bio Alcohols

2022-03-29
2022-01-0605
Waste Plastics are the main barriers in the rain water percolation into the ground which enhances the improvement in the water table. This study utilizes pyrolised waste plastic oil along with diesel-bioethanol, diesel-biobutanol and butanol to fuel variable compression ratio engine. Initially, various proportions of pyrolised waste plastic oil has been blended with bioethanol-diesel blends (containing 15% of bioethanol), biobutanol-diesel blends (containing 20% biobutanol) and Biobutanol and tested for solubility under 25°C followed by property testing as per the American Society of Testing Materials. The results of the property resting are compared by considering diesel fuel as the base fuel. The results indicate that properties of the blends containing 21% of pyrolised waste plastic oil with bioethanol-diesel blends, 15% of ethanol blended with diesel fuel, and 12% of pyrolised waste plastid oil with 88% of biobutanol are closer to that of diesel fuel.
Technical Paper

Design and Experimental Characterization of a Parallel-Hybrid Powertrain for Hand-held Tools

2022-03-29
2022-01-0604
On the basis of small hybrid powertrain investigations in hand-held power tools for fuel consumption and emissions reduction, the prototype hybrid configuration of a small single-cylinder four-stroke internal combustion engine together with a brushless DC electric motor is built and measured on the testbench in terms of efficiency and emissions but also torque and power capabilities. The onboard energy storage system allows the combustion engine electrification for controlling the fuel amount and the combustion behavior while the electric motor placement instead of the pull-start and flywheel allows for start-stop of the system and load point shifting strategy for lower fuel consumption. The transient start-up results as well as the steady-state characterization maps of the system can set the limits on the fuel consumption reduction for such a hybrid tool compared with the baseline combustion-driven tool for given load cycle characteristics.
Technical Paper

NVH Comparative Analysis of 3in1 and 2in1 Electric Drive System Based on Experimental Research

2022-03-29
2022-01-0606
As the key assembly of new energy vehicles, the noise and vibration, and harshness (NVH) performance of integrated electric drive system directly affects the driving quality of new energy vehicles. In this paper, the vibration noise characteristic test of 3in1 electric drive system is carried out in the semi-muffler chamber. In order to compare and analyze the difference between 2in1 and 3in1 electric drive system NVH performance, the power electronics unit (PEU) in the 3in1 system was removed and placed on the ground away from the platform, and vibration noise test was carried out. In order to analyze the difference of NVH performance between 2in1 status and 3in1 status, the PEU in the 3in1 system was removed and placed on the ground far away from the bench, and the NVH test was carried out. The microphone signal at 1m position and the vibration acceleration signal of the key structural surface of the system are measured experimentally.
X