Refine Your Search

Search Results

Technical Paper

Flexible and Low-Cost Robotic System for Drilling Material Stacks

2016-09-27
2016-01-2091
The aim of this paper is to present a robust and low-cost automatic system for drilling aluminum stacks, as well as an integral methodology for the design of tool trajectories and the control of the drilling process itself. The proposed system employs a high accuracy robotic arm, a commercial spindle head and a specially developed SCADA, which enables it to load tool trajectories designed by using any software application. Furthermore, this SCADA is useful to monitor the main parameters of the drilling process for anticipating problems related to the unexpected tool wear or for a quick response in case of tool collision. A special jig for positioning the stack to be drilled is designed to increase the robot accessibility. In this work, tests are performed for optimizing the cutting parameters of the robotic system in order to maximize the accuracy and the surface finishing of the holes.
Technical Paper

An Attempt for an Industry 4.0 Inspired Cloud-Supported Approach for Predictive Maintenance on the Example of Refill Friction Stir Spot Welding (RFSSW)

2016-09-27
2016-01-2125
This paper presents an approach to how existing production systems can benefit from Industry 4.0 driven concepts. This attempt is based on a communication gateway and a cloud-based system, that hosts all algorithms and models to calculate a prediction of the tool wear. As an example we will show the Refill Friction Stir Spot Welding (RFSSW), a solid state joining technique, which is examined at the Institute of Production Engineering (LaFT) of the Helmut-Schmidt-University, University of the Federal Armed Forces Hamburg, for years. RFSSW is a sub-section of friction welding, where a rotating tool that consists out of three parts is used to heat up material to a dough-like state. Since Refill Friction Stir Spot Welding produces a selective dot-shaped connection of overlapping materials, the production requirements are similar to riveting or resistance spot welding.
Technical Paper

Contribution of 3D Printing in Tooling and Portable Tools Application Case for a Smart Driller

2016-09-27
2016-01-2127
The recent contribution rise in 3D printing is rapidly changing the whole industry. In aeronautics, it has 2 major domains of growth: Aircraft parts Tooling and portable tools Aircraft parts in metallic 3D printing have been highly publicized in the media, although they represent only a tiny share of the aircraft cell in the short term. On the other hand, metallic (and non-metallic) 3D printing in tooling and tools can bring immediate advantages compared to traditional methods. The advantages: Design made directly for the final function Optimized for strength vs weight Weight reduction Reduction in number of parts Short cycle time from design to use Low cost for customization The drawbacks Limited in size We have already applied this new manufacturing technique to obtain real breakthroughs in portable tools.
Technical Paper

A New Design of Low Cost V-band Joint

2016-09-27
2016-01-2128
In this work we have proposed an interesting clamping solution of V-band which has an important industrial impact by reducing the cost and assembly process as well compare to the traditional V-band. The design what we are focusing for is applied for all size of turbochargers which helps to connect the hot components such as manifold and turbine housing. The cost for V-band is mainly from T-bolt. It is made from special stainless steel which represents 50% of the total cost. In this work it is proposed a new V-band joint by changing bolt clamping status from tension to compression. From tension to compression we change the bolt material from high cost steel to low cost steel. The new total cost is reduced by 40%. The prototype is made and performed in static tests including anti-rotating torque test and salt spray test. The new joint meets the design requirements at static condition. Further work will focus on the dynamic qualification and at high temperature as well.
Technical Paper

Flexible Machining System for an Efficient Skin Machining

2016-09-27
2016-01-2129
Aluminum skin milling is a very challenging process due to the high quality requirements needed in the aeronautic and aerospace industries. Nowadays, on these markets, there are just two technological approaches able to face the manufacturing of this sort of wide thin blanks: chemical and mechanical milling by means of highly complex machines. Both solutions lead to a high investment requirement that affect directly on the application profitability on these industrial sectors. This paper presents a flexible machining system that allows milling skin shaped parts within required tolerances by means of an innovative universal holding fixture combined with an adaptive toolpath development. This flexible holding fixture can be adapted to the required shape and can hold uniformly the whole sheet surface. Besides, the solution includes an implementation that can adapt the machining toolpath by means of the skin thickness online measurement.
Technical Paper

Refill Friction Stir Spot Joining Rivet Replacement Technology

2016-09-27
2016-01-2130
The Refill Friction Spot Joining (RFSJ) is an emerging solid-state spot welding technology that thermo-mechanically creates a molecular-level bond between the work-pieces. RFSJ does not consume any filler or foreign materials so that no additional weight is introduced to the assembly. As the solid-to-liquid phase transition is not involved in RFSJ in general, there is no lack of fusion or material deterioration caused by liquefaction and solidification. Unlike the conventional friction stir spot welding, RFSJ produces a spot joint with a perfectly flush surface finish without a key or exit hole. Currently, the aerospace industry employs solid rivets for fastening the primary structures as they meet the baseline requirements and have well-established standards and specifications.
Technical Paper

Vibration Assisted Drilling of Aerospace Materials

2016-09-27
2016-01-2136
Insufficient chip extraction often leads to disruptions of automated drilling processes and will have a negative impact on the surface qualities. One opportunity to avoid chip accumulation is based on a kinematically enforced chip breakage caused by sinusoidal axial oscillations of the drilling tool. Recent investigations have shown that the quality of chip extraction is, amongst others, considerably depending on the chip shape and mass which are defined by the cutting parameters feed, amplitude and frequency. So far only mechanical systems in the form of tool holders have been available on the market, which are restricted to a fixed frequency (oscillation frequency is coupled to the spindle speed). In the present study a spindle with magnetic bearings was used which allows to adjust the oscillation frequency independent of the spindle speed and therefore enables all opportunities to affect the generated chip shapes.
Technical Paper

Accuracy Analysis and Error Source Identification for Optimization of Robot Based Machining Systems for Aerospace Production

2016-09-27
2016-01-2137
Strong market growth, upcoming global competition and the impact of customer-requirements in aerospace industry demand for more productive, flexible and cost-effective machining systems. Industrial robots have already demonstrated their advantages in smart and efficient production in a wide field of applications and industries. However, their use for machining of structural aircraft components is still obstructed by the disadvantage of low absolute accuracy and adverse reaction to process loads. This publication demonstrates and investigates different methods for performance assessment and optimization of robot-based machining systems. For conventional Cartesian CNC machining systems several methods and guidelines for performance assessment and error identification are available. Due to the attributes of a common 6-axis-robot serial kinematics these methods of decoupled and separated analysis fail, especially concerning optimization of the system.
Technical Paper

Study of Influence of Electron Beam Treatment on Surface Properties of the Material Produced by Selective Laser Melting

2016-09-27
2016-01-2142
The treatment of solid surface by powerful streams of charged particles accelerated with power density ≥106 W/cm2 widely used for modification of different materials properties. The fast enter of electron beam power in the material of target causes the flow intense thermal and deformation processes. The changing of the structure, the phase composition, the microrelief of treated surface consequently happens. It is often accompanied by the hardening and increase of the wearing properties. The work proposed of using low-energy high-current electron beam as finish treatment of product obtained by selective laser melting of heat-resistant nickel alloy EP648. The subject of research was the surface properties of the product.
Technical Paper

High Speed Fastener Inspection

2016-09-27
2016-01-2145
Inspection of fasteners prior to installation is critical to the quality of aerospace parts. Fasteners must be inspected for length/grip and diameter at a minimum. Inspecting the fasteners mechanically just prior to insertion can cause additional cycle time loss if inspection cannot be performed at the same time as other operations. To decrease fastener inspection times and to ensure fastener cartridges contain the expected fastener a system was devised to measure the fastener as it travels down the fastener feed tube. This process could be adapted to inspection of fasteners being fed to the process head of a running machine eliminating the mechanical inspection requirement and thus decreasing cycle time.
Technical Paper

High Performance Motion Control Without a Foundation For Fuselage Fastening Automation

2016-09-27
2016-01-2103
This technical paper details an optimized Drivmatic machine design delivered to a Tier 1 aero structure supplier to automate drilling and installation of rivets, hi-loks, lockbolts & swage collars for individual fuselage panel assemblies with high throughput & strict quality requirements. While certain robot solutions continue to be explored for specific applications at many Tier 1 aero structure suppliers, robot payload capacity has limitations beyond certain criteria, which often times point towards an alternative machine design as in this case study. A typical approach for adding more automation is to allocate shop floor space based on the solution’s foot print, however contrary to most approaches this solution had to be designed to fit within a pre-determined factory footprint over a geographic location with a high water table that would not permit a foundation.
Technical Paper

Effect of Cutting Parameters on Dimensional Hole Quality and Burr Height for One-Shot Drilling of Hybrid Stacks

2016-09-27
2016-01-2101
A hybrid drilling process of multi material stacks with one shot drilling recently emerge as an economical and time efficient method in aerospace industry. Even though the comprehensive experience and knowledge is available for the cutting parameters of composites and metals alone, significant gap exist for the hybrid drilling parameters. Determination of these parameters such as feed rate, spindle speed and pecking depth has vital importance so as to provide a robust and optimal process to ensure dimensionally high quality, burr and delamination free holes. Main challenge of hybrid drilling operation is to obtain required hole diameter with adequate homogeneity and repeatability. In this study, effect of cutting parameters on dimensional hole quality was investigated. In addition to the hole diameter tolerances, CFRP hole enlargement phenomena which is encountered as a specific drawback of metal-exit stack configurations is also addressed within the scope of this study.
Technical Paper

Design of a Reconfigurable Assembly Cell for Multiple Aerostructures

2016-09-27
2016-01-2105
This paper presents novel development of a reconfigurable assembly cell which assembles multiple aerostructure products. Most aerostructure assembly systems are designed to produce one variant only. For multiple variants, each assembly typically has a dedicated assembly cell, despite most assemblies requiring a process of drilling and fastening to similar tolerances. Assembly systems that produce more than one variant do exist but have long changeover or involve extensive retrofitting. Quick assembly of multiple products using one assembly system offers significant cost savings from reductions in capital expenditure and lead time. Recent trends advocate Reconfigurable Assembly Systems (RAS) as a solution; designed to have exactly the functionality necessary to produce a group of similar components. A state-of-the-art review finds significant benefits in deploying RAS for a group of aerostructures variants.
Technical Paper

Assembly Assistance and Position Data Feedback by Means of Projection Lasers

2016-09-27
2016-01-2107
The global competition challenges aircraft manufactures in high wage countries. The assembly of large components is very difficult and distinguished by fixed position assembly. Many complex assembly processes such as aircraft assembly are manually done by highly skilled workers. The aircraft manufactures deal with a varying number of items, increasing number of product variants and strict product requirements. During the assembly process hundreds of clips, ties and stringers as well as thousands of rivets must be assembled. To remain competitive in global competition, companies in high wage countries like Germany must insure a continuously high productivity and quality level. To achieve a reduction of cycle times with a simultaneous increase in quality, supportive assistance systems for visual support, documentation and organization within the assembly are required. One example for visual assistance systems are laser projection systems.
Technical Paper

Unique Material Handling and Automated Metrology Systems Provides Backbone of Accurate Final Assembly Line for Business Jet

2016-09-27
2016-01-2104
Figure 1 Global 7000 Business Jet. Photo credit: Robert Backus. The customer’s assembly philosophy demanded a fully integrated flexible pulse line for their Final Assembly Line (FAL) to assemble their new business jets. Major challenges included devising a new material handling system, developing capable positioners and achieving accurate joins while accommodating two different aircraft variants (requiring a “flexible” system). An additional requirement was that the system be easily relocated to allow for future growth and reorganization. Crane based material handling presents certain collision and handover risks, and also present a logistics challenge as cranes can become overworked. Automated guided vehicles can be used to move large parts such as wings, but the resulting sweep path becomes a major operational limitation. The customer did not like the trade-offs for either of these approaches.
Technical Paper

Variation Aware Assembly Systems for Aircraft Wings

2016-09-27
2016-01-2106
Aircraft manufacturers desire to increase production to keep up with anticipated demand. To achieve this, the aerospace industry requires a significant increase in the manufacturing and assembly performance to reach required output levels. This work therefore introduces the Variation Aware Assembly (VAA) concept and identifies its suitability for implementation into aircraft wing assembly processes. The VAA system concept focuses on achieving assemblies towards the nominal dimensions, as opposed to traditional tooling methods that aim to achieve assemblies anywhere within the tolerance band. It enables control of the variation found in Key Characteristics (KC) that will allow for an increase in the assembly quality and product performance. The concept consists of utilizing metrology data from sources both before and during the assembly process, to precisely position parts using motion controllers.
Technical Paper

Use of an Innovative Modular Gripper System for Flexible Aircraft Assembly Operations

2016-09-27
2016-01-2108
The rising demand for civil aircraft leads to the development of flexible and adaptive production systems in aviation industry. Due to economic efficiency, operational accuracy and high performance these manufacturing and assembly systems must be technologically robust and standardized. The current aircraft assembly and its jigs are characterized by a high complexity with poor changeability and low adaptability. In this context, the use of industrial robots and standardized jigs promise highly flexible and accurate complex assembly operations. This paper deals with the flexible and adaptable aircraft assembly based on industrial robots with special end-effectors for shaping operations. By the development and use of lightweight gripper system made of carbon fiber reinforced plastics the required scaling, robustness and stiffness of the whole assembly system can be realized.
Technical Paper

High Flushness Installation of Countersunk Fasteners

2016-09-27
2016-01-2109
Aerospace structures are typically joined to form larger assemblies using screw lock or swage lock fasteners or rivets. Countersunk fasteners are used widely in the aerospace industry on flying surfaces to reduce excrescence drag and increase aircraft performance. These fasteners are typically installed to a nominal countersink value which leaves them flush to the surface before being locked into position. The Northern Ireland Technology Centre (NITC) at Queen’s University Belfast has developed and demonstrated two processes which enable high tolerance flush fastening of countersunk fasteners: The ‘Flush Install’ process produces countersunk holes based on the specific geometry of each individual fastener; The ‘Fettle Flush’ process accurately machines fasteners to match the surrounding surface. Flushness values well within the allowable tolerances have been demonstrated for both Flush Install and Fettle Flush processes.
Technical Paper

End-Effector for Automatic Shimming of Composites

2016-09-27
2016-01-2111
Gaps in composite structures are a risky factor in aeronautical assemblies. For mechanically joined composite components, the geometrical conformance of the part can be problematic due to undesired or unknown re-distribution of loads within a composite component, with these unknowns being potentially destructive. To prevent unnecessary preloading of a metallic structure, and the possibility of cracking and delamination in a composite structure, it is important to measure all gaps and then shim any gaps greater than 127 microns. A strategy to overcome the high relative tolerances for assemblies lies in the automated manufacturing of shims for the gaps previously predicted through the evaluation of their volumes via a simulation tool. This paper deals with the development of a special end-effector prototype to enable the shimming of gaps in composites structures using a pre-processed geometry.
Technical Paper

STAXX 50K - Standards for Carbon Composites Production Technology

2016-09-27
2016-01-2114
Carbon composites have been on an odyssey within the past 15 years. Starting on the highest expectations regarding the performance, reality was hitting a lot of programs hard. Carbon composites were introduced on a very high technical level and industry has shown of being capable to handle those processes in general. In particular, production never sleeps and processes undergo a continuous change. Within these changes costs remain the most critical driver. As products are improving during their lifetime, they usually increase the degree of complexity, too. According to the normal cost improvement, this has drastic consequences for production. When setting up the first generation of composite production, the part being produced has been in the centre of attention.
X