Refine Your Search

Search Results

Technical Paper

Optimization of the Layout and Control Strategy for Parallel Through-the-Road Hybrid Electric Vehicles

2014-04-01
2014-01-1798
This paper describes the optimization of the layout and of the control strategy of through-the-road (TTR) parallel hybrid electric vehicles equipped with two compression-ignition engines that feature different values of maximum output power. First, a tool has been developed to define the optimal layout of each TTR vehicle. This is based on the minimization of the powertrain and fuel cost over a 10-year time span, taking into account the fuel consumption. Several performance requirements are guaranteed during the optimization, namely maximum vehicle velocity, 0-100 km/h acceleration time, gradeability and the all-electric range. A benchmark optimizer that is based on the dynamic programming theory has been developed to identify the optimal working mode and the gear number, which are the control variables of the problem. A mathematical technique, based on the pre-processing of a configuration matrix, has been developed in order to speed up the calculation time.
Technical Paper

Study of Power Losses in a Two-Speed Dual Clutch Transmission

2014-04-01
2014-01-1799
This paper mainly studies the power losses in a refined two-speed dual clutch transmission which is equipped in a electric vehicle test rig. Both numerical and experimental investigations are carried out. After theoretical analysis of the power losses original sources, the developed model is implemented into simulation code to predict the power losses. In order to validate the effectiveness of the proposed model, results from experimental test are used to compare the difference the simulation and test. The simulation and test result agree well with each other. Results show that the power losses in the two-speed are mainly generated by multi-plate wet clutch drag torque and gear churning loss.
Technical Paper

Switching Response Optimization for Cylinder Deactivation with Type II Passenger Car Applications

2014-04-01
2014-01-1704
An advanced Variable Valve Actuation (VVA) system is optimized for response time in order to provide robust switching at high engine speeds. The VVA system considered is Cylinder Deactivation (CDA) for the purpose of improving fuel economy. Specifically, a Switching Roller Finger Follower (SRFF) on a Dual Overhead Camshaft (DOHC) engine is optimized for cylinder deactivation. The objective of this work is to (1) improve the latch response time when the system response is the slowest, and (2) balance the “ON” and “OFF” response time. A proper tradeoff was established to provide the minimum switching time such that deactivation and reactivation occurs seamlessly and in the right sequence. The response time optimization is accomplished while maintaining the existing packaging space of the overhead. A camshaft with a single lobe per SRFF device on a type II valvetrain was used as the baseline configuration for this study.
Technical Paper

Practical Considerations in the Airflow Optimization of a Single Cylinder Diesel Engine

2014-04-01
2014-01-1705
The present work is concerned with the design of an optimum air intake system for a single cylinder reciprocating diesel engine. It is a well known fact that air flow rates of a naturally aspirated engine are sensitive to the geometrical dimensions of the pipes that connect the engine to the atmosphere. Hence, tuning intake system dimensions for optimum airflow rates is of great importance. In this scenario simulation tools can be useful for the optimization of intake system. The one dimensional simulation tool AVL BOOST is used to predict air flow rates with different combinations of connecting hose diameters and lengths. Subsequently air flow rates are measured with selected clean hoses on an engine steady state test bench. It is found in the initial tests that the lengths and diameters of optimum hoses deviate from the AVL BOOST predicted optimum geometric dimensions.
Technical Paper

Design and Development of a Novel Charge Boosting System for a Single Cylinder SI Engine

2014-04-01
2014-01-1707
The demand of Torque from an engine is highly variable, good torque at lower engine speeds improve drivability at city driving condition and good torque at higher engine speeds improves cruising at highway driving, conventionally engine produces better torque at one particular speed leaving poor drivability at others. The Torque characteristics of an engine depends upon the volumetric efficiency of the engine, volumetric efficiency of a naturally aspirated engine can be improved by tuning the intake manifold. For improving volumetric efficiency, several technologies were developed, among that Dual Intake Manifold system is one where the flow of charge is channelized between longer and shorter flow path depending on the engine operating speed. Application of conventional Dual Intake Manifold system is limited due to increased cost, complexity in assembly and need for an external power source for actuation.
Technical Paper

Hanger Location Design and Vibration Isolation of an Exhaust System

2014-04-01
2014-01-1708
In the present study, the research of the exhaust system is performed in three steps. In the first step, the average driving degree of freedom displacement (ADDOFD) is calculated by the free modal analysis of the exhaust system. It is easy to find the reasonable location of the hanger according to the value of the ADDOFD, since it represents the relative size of some DOF's response displacement at excitation state. The second of which is to analyse the vibration isolation performance of the exhaust system based on the first step. The dynamic analysis of the exhaust system together with the powertrain is studied, by which way the unit sinusoidal excitation is applied at the powertrain's mass centre, so that the response force at the hanger can be obtained. Finally, the relationship between the constrained model of the exhaust system and the stiffness of the hanger is investigated, which is significant in engineering.
Technical Paper

Average-Value Model of Induction Motor Drive for Cost Effective HIL Testing of E-Motor Controller for Mild Hybrid Application

2014-04-01
2014-01-1887
Induction motor is very much used in mild hybrid vehicles because of its low cost, rugged structure and reliability. To test the induction motor controller in hardware-in-the-loop (HIL) simulation environment efficiently in both motoring and generating modes, generally, an instantaneous dynamic model of induction motor drive is used which requires the instantaneous values of PWM signals of inverter switches and hence a very high sampling frequency of about twenty times the switching frequency is required to effectively capture all the switching information of MOSFETS. This requires a HIL system with very powerful processor which increases the overall cost of system. In this paper, a dynamic average-value model of induction motor drive is developed in MATLAB/Simulink which requires only the duty cycle information instead of instantaneous switching information of PWM signals. Its performance is compared with the instantaneous model which is also developed in MATLAB/Simulink.
Technical Paper

Development of an Exhaust Driven Turbine-Generator Integrated Gas Energy Recovery System (TIGERS®)

2014-04-01
2014-01-1873
This paper describes the design and development steps taken to realise a functioning Turbo-generator Integrated Gas Energy Recovery System (TIGERS®). The main areas covered focus on simulation, machine design, control system development and validation. The mechanical design for this application is particularly challenging for a number of reasons. The turbine is capable of rotating the shaft at speeds greater than its critical rotating limit. Rolling element grease filled bearings are used to allow application flexibility; these have an operating temperature limit of 200°C. The exhaust gas can reach temperatures greater than 900°C in spark ignition applications, whereas the turbine upper functional limit is 850°C. The power electronics are integrally mounted in the machine and have a maximum thermal operating limit of 120°C.
Technical Paper

The Optimization of Control Parameters for Hybrid Electric Vehicles based on Genetic Algorithm

2014-04-01
2014-01-1894
The traditional vehicle design methods of hybrid electric vehicles are based on the rule-based control strategy, which often adopt the trial and error methods and the model-based numerical optimization methods. But these methods require a large number of repeated tests and a longer-term development cycle. In this paper, approximately the global optimization algorithm was used in control parameters designing through rational design of the penalty weights of objective function. But the optimized parameters apply only to vehicles that operating in the special drive cycle to get better fuel economy. Therefore, a drive cycle recognition algorithm was proposed to identify types of drive cycles in real-time, then an off-line genetic algorithm was adopted to acquire the optimization of control parameters under the various drive cycles, through drive cycle recognition results to choose the best control parameters.
Technical Paper

Specification and Design of a Switched Reluctance 48 V Belt Integrated Starter Generator (B-ISG) for Mild Hybrid Passenger Car Applications

2014-04-01
2014-01-1890
This paper describes the challenges associated with the specification and design of a 48 V Belt Integrated Starter Generator for passenger vehicle applications. The main areas discussed are the vehicle and application variations considered both in terms of electrical and mechanical architecture and how these transfer into the motor design at all levels. The paper focuses in particular on the challenges of balancing the need for the customisation of the motor for different applications against the need to maintain component commonality across design variants to minimise cost, reduce risk and accelerate development cycles.
Technical Paper

A Framework for Optimization of the Traction Motor Design Based on the Series-HEV System Level Goals

2014-04-01
2014-01-1801
The fidelity of the hybrid electric vehicle simulation is increased with the integration of a computationally-efficient finite-element based electric machine model, in order to address optimization of component design for system level goals. In-wheel electric motors are considered because of the off-road military application which differs significantly from commercial HEV applications. Optimization framework is setup by coupling the vehicle simulation to the constrained optimization solver. Utilizing the increased design flexibility afforded by the model, the solver is able to reshape the electric machine's efficiency map to better match the vehicle operation points. As the result, the favorable design of the e-machine is selected to improve vehicle fuel economy and reduce cost, while satisfying performance constraints.
Technical Paper

Study on Miniaturization of an Air-Cooled Inverter Integrated with Motor

2014-04-01
2014-01-1872
This paper reports about a trial for miniaturization of an air-cooled inverter integrated with motor, which is realized by reduction of the total volume of smoothing capacitor. An integrated system prototype was constructed with a disk-shaped inverter positioned at the rear end of the motor. We examined the possibility of using a ceramic capacitor, which features a higher heat-resistance temperature, lower internal resistance and higher capacity density than a film capacitor. At the same level of capacitance, the volume of a ceramic capacitor is less than one-half that of a film capacitor, enabling the size of the smoothing capacitor to be reduced to approximately one-fifth that of the currently used device. A suitable circuit configuration and physical layout of distributed smoothing capacitors and corresponding power device modules are proposed and demonstrated.
Technical Paper

Study of a Hybrid Refuse Truck with City Driving Cycles

2014-04-01
2014-01-1800
Refuse trucks are used in many communities for garbage collection and compression in China. This article introduces representative driving cycles of refuse trucks in multiple cities. System configuration is described first. Then, traditional pedal map, shift-pattern, and shift-point are used as basis to optimize energy utilization for specific hybrid configurations under refuse truck driving situation. Since AC power is used as source for garbage compression, to take advantage of such operating characteristics, engine start and stop technology can be a viable technology to improve fuel economy. Experiments are conducted to reach the conclusions.
Technical Paper

Effect of POMDME Blend on PAH Emissions and Particulate Size Distribution from an In-Use Light-Duty Diesel Engine

2014-04-01
2014-01-1951
Polyoxymethylene dimethyl ether (POMDME) is a synthetic fuel from alternative energy sources, which can be blended in any ratio with petroleum diesel fuel. The regulated and non-regulated emissions, especially polyaromatic hydrocarbons (PAH) and particle number size distribution (PNSD), from an old Euro-3 diesel engine fueled with a 7,5% blend of POMDME in commercial diesel fuel were measured and compared to the base diesel fuel, after adjusting exhaust gas ratio (EGR) in order to match the level of NOx emission. The experimental results show a significant reduction in soot and particulate matter (PM) emissions. The number of particles smaller than 30 nm is slightly increased at low speed and low load operating conditions, while at high speed the number concentration of particles larger than 30 nm is reduced. The PAH emissions were found higher for the oxygenated fuel blend than for the base fuel.
Technical Paper

A New Multi Air Gap Motor with Trench Shaped Coil for HEV Applications

2014-04-01
2014-01-1870
This paper proposes a new multi air gap motor with trench-shaped coil. The proposed motor has high torque without rare earth magnets compared to conventional single air gap motors due to its multiple air gap and ferrite permanent magnet (PM) assisted segment rotor poles. Firstly, the basic structure and features of proposed motor is shown: three stator cores, integrated a set of three phase windings, and an annular rotor core with magnetic saliency at three sides and ferrite magnets. Then, the performance of proposed new motor and well-known single air gap IPMSM with rare earth magnet are compared by FEA. Secondly, the simple winding method similar to the conventional motor is clarified. Next, practical design of the 3-D magnetic circuit with laminated steel is discussed. Eddy current generated by the magnetic flux passing through the laminated steel in the core stacking direction is focused, and methods for reducing eddy current loss are shown.
Technical Paper

Vehicle with Wind Powered Generator

2014-04-01
2014-01-1953
Today, some vehicles include a regenerative-braking system such as the electrical motor-generator that converts the vehicle's kinetic energy into electrical energy to recharge one or more vehicle batteries. The idea is to use air flow to produce additional electrical energy in response to deceleration of the vehicle. With the Wind Power Generator System (WPGS) as a green system, a vehicle can produce extra energy, reduce gasoline usage, and reduce air pollution.
Technical Paper

Developing Modeling and Simulation Tools in Class to Prepare Engineering Students for the Automotive Industry

2014-04-01
2014-01-1914
The Wayne State University EcoCAR2 team provided its members with Modeling and Simulation training course for the second summer of the competition. EcoCAR2 is a three-year Advanced Vehicle Technology Competition (AVTC) sponsored by General Motors and the Department of Energy. The course lasted three months and included 45 hours of formal lectures and class hands-on work and an estimated one hundred and fifty hours in home assignments that directly contributed to the team's deliverables. The course described here is unique. The design and class examples were extracted from an in-house complete vehicle simulation and control code to ensure hands-on, interactive training based on real-world problems. The course investigated the physics behind every major powertrain component of a hybrid electric vehicle and the different ways to model the components into a full vehicle simulation.
Technical Paper

Intelligent Energy Management Strategy for a Parallel Hybrid Vehicle

2014-04-01
2014-01-1909
Hybrid electric vehicles (HEV's) are facing increasing challenges in optimizing the energy flow through a vehicle system, in order to improve both fuel economy and vehicle emissions. Energy management of HEV's is a difficult task due to the complexity of the total system in terms of electrical, mechanical and thermal behavior. In this paper, an advanced control strategy for a parallel hybrid vehicle is developed. Four main steps are presented, particularly to achieve a reduction in fuel consumption. The first step is the development of a highly complex HEV model, including dynamic and thermal behavior. Second, a heuristical control strategy is developed to determine the HEV modes and third, a State of Charge (SoC) leveling is developed with the interaction of a fuzzy logic controller. It is proposed to calculate the load point shifting of the Internal Combustion Engine (ICE) and the desired battery SoC.
Technical Paper

Some Experimental Studies on Combustion, Emission and Performance Characteristics of an Agricultural Diesel Engine Fueled with Blends of Kusum Oil Methyl Ester and Diesel

2014-04-01
2014-01-1952
Biodiesel from non-edible vegetable oils is of paramount significance in India due to insufficient edible oil production. The present work deals with relatively underutilized non-edible oil “Schleichera oleosa” or “Kusum”. The Kusum biodiesel (KB) was produced using a two stage esterification cum transesterification process as the free fatty acid content of the oil was high. Important physico-chemical properties were evaluated and they were found to conform with corresponding ASTM/EN standards. Various test fuels were prepared for the engine trial by blending 10%, 20%, 30% and 40% of KB in diesel by volume and were named as KB10, KB20, KB30 and KB40 respectively. The results showed that full load brake thermal efficiency was dropped by 3.8% to 17% with increase in KB composition in the test fuel. Diesel (D100) showed the maximum full load brake specific energy consumption followed by KB10, KB20, KB30 and KB40.
Technical Paper

Energy Management System for Electrified Tactical Mobility Platforms

2014-04-01
2014-01-1911
Energy management system designs for road vehicle applications have for some time considered the use of road data geospatial attributes such as elevation, speed limits and GPS derived online information, like traffic and position, to forecast the amount of fuel that could be consumed by a given vehicle on a specific route. This approach is especially useful when dealing with electrified platforms as on-board energy storage devices (such as fuel cells or batteries) have a lower energy density ratio [kJ/g]. Unfortunately within the tactical mobility context such information might not be readily available, either by passive obstructions, like mountains, or active ones due to jamming, etc. This paper will elaborate on an energy management system meant to deal with the uncertainty created by navigating in terrain where only basic trip information is available, such as probable distance to be travelled.
X