Refine Your Search

Search Results

Technical Paper

Optimization of Mount Bracket on Whine Noise Performance for a Battery Electric Vehicle

2024-04-09
2024-01-2309
Recently, the market share of electric vehicles is becoming increasingly obvious. It is expected that electric vehicles are quieter than fuel vehicles. Actually, without the cover of low-frequency engine noise, the high-frequency noise of electric vehicles is more prominent, which seriously affect the perceived sound quality. The present work is related tonal noise resulted from electric drive system (EDS), which is one of the fundamental noise sources for battery electric vehicle (BEV). The dominant noise sources observed in the vehicle interior are 26th and 36th orders for reducer and drive motor separately. Poor vibration isolation of right mounting system is the fundamental cause identification of EDS noise which has been investigated with objective measurements and simulation tools. Dynamic stiffness analysis is carried out to optimize the passive bracket. An engineering solution is implemented to enhance bracket to improve resonance effect.
Technical Paper

Commercial Vehicle's Longitudinal Deceleration Precise Control Considering Vehicle-Actuator Dynamic Characteristics

2024-04-09
2024-01-2313
The installation of the Electronic Braking System (EBS) could effectively improve braking response speed, shorten braking distance, and ensure driving safety of commercial vehicles. However, during longitudinal deceleration control process, the commercial vehicles face not only challenges such as large inertia mass and random road gradient resistance of the vehicle layer, but also non-linear characteristics of the EBS actuator layer. In order to solve these problems, this paper proposes a commercial vehicle’s longitudinal deceleration precise control strategy considering vehicle-actuator dynamic characteristics. First, longitudinal dynamics of commercial vehicle is analyzed, and so is the EBS’ non-linear response hysteresis characteristics. Then, we design the dual layer deceleration control strategy. In vehicle layer, the recursive least squares with forgetting factor and Kalman filtering are comprehensively applied to dynamically estimate the vehicle mass and driving road slope.
Technical Paper

Parameter Identification of Constitute Model of Glass Fiber Reinforced Polypropylene under Adiabatic Temperature Rise Loads

2024-04-09
2024-01-2355
To characterize the stress flow behavior of engineering plastic glass fiber reinforced polypropylene (PPGF) commonly used in automotive interior and exterior components, mechanical property is measured using a universal material testing machine and a servo-hydraulic tensile testing machine under quasi-static, high temperature, and high strain rate conditions. Stress versus strain curves of materials under different conditions are obtained. Based on the measured results, a new parameter identification method of the Johnson-Cook (J-C) constitutive model is proposed by considering the adiabatic temperature rise effect. Firstly, a material-level experiment method is carried out for glass fiber reinforced polypropylene (PPGF) materials, and the influence of wide strain rate range, and large temperature span on the material properties is studied from a macroscopic perspective.
Technical Paper

Dynamic Modeling of Quadrotor-Slung-Load System: A Model Based on the Quasi-Coordinates Approach

2024-04-09
2024-01-2312
With the development of hardware and control theory, the application of quadcopters is constantly expanding. Quadcopters have emerged in many fields, including transportation, exploration, and object grabbing and placement. These application scenarios require accurate, stable, and rapid control, and a suitable dynamic model is one of the prerequisites. At present, many works are related to it, most of which are modeled using the Newton-Euler method. Some works have also adopted other methods, including the Lagrangian and Hamiltonian methods. This article proposes a new method that solves the Hamiltonian equation of a quadcopter expressed in quasi-coordinate. The external forces and motion of the body are expressed in the quasi-coordinate system of the body, and solved through the Hamiltonian equation. This method simplifies operations and improves computational efficiency. Additionally, a single pendulum is attached to the quadcopter to simulate application scenarios.
Technical Paper

Elucidation of Sealing Mechanism of Novel Acrylate Liquid Based BluSealTM Wire Harness Splice Sealing Technology

2024-04-09
2024-01-2356
Unlike conventional heat shrink tubes or enclosure systems which only seals wires and splices on the outside, a novel Acrylate based sealing technology developed and introduced by Eurotech is a low viscosity fluid formulated to be applied to the splices either in liquid droplets or by dipping, utilizes fast capillary-wicking action and quick self-cure inside the wires to form a robust, cost effective, flexible, impenetrable seal to prevent moisture damage of wire harnesses and associated electrical components. This technology is an enabler of new wire harness architectures currently limited by the shortcomings of conventional sealing products such as heat shrink tubes which come up short when the splice configurations or geometries become too complex or difficult for sealing from the outside.
Technical Paper

Exploring Natural Frequency and Damping in Coir-Rubber Polymer Composites for Vibration Control in Mobility Vehicles

2024-04-09
2024-01-2357
This study delves into the dynamic properties of hybrid composite materials, specifically focusing on the natural frequency and modal damping characteristics of Coir Fiber-Rubber Particles Reinforced Polymer Composites (CRP). Comprehensive experimental investigations were conducted utilizing an FFT analyzer. Initial experiments involved the preparation of specimens with varying rubber content, ranging from 2% to 5%. Coir, known for its cellulose-rich composition, was selected due to its innate damping properties, making it highly effective in mitigating vibrations. The primary motivation behind this research is to provide cost-effective solutions for reducing vibrations in mobility vehicles, addressing challenges associated with passenger comfort, durability, and overall performance. The study yielded promising results, with CRP exhibiting substantial reductions in vibrations.
Technical Paper

A Holistic Approach to Mitigating Warpage in Fiber-Reinforced Plastic Injection Molding for Automotive Applications

2024-04-09
2024-01-2358
Fiber-reinforced plastics (FRPs), produced through injection molding, are increasingly preferred over steel in automotive applications due to their lightweight, moldability, and excellent physical properties. However, the expanding use of FRPs presents a critical challenge: deformation stability. The occurrence of warping significantly compromises the initial product quality due to challenges in part mounting and interference with surrounding parts. Consequently, mitigating warpage in FRP-based injection parts is paramount for achieving high-quality parts. In this study, we present a holistic approach to address warpage in injection-molded parts using FRP. We employed a systematic Design of Experiments (DOE) methodology to optimize materials, processes, and equipment, with a focus on reducing warpage, particularly for the exterior part. First, we optimized material using a mixture design in DOE, emphasizing reinforcements favorable for warpage mitigation.
Technical Paper

Strategies to Reduce Higher Unburned Hydrocarbon and Carbon Monoxide Emissions in Reactivity Controlled Compression Ignition

2024-04-09
2024-01-2360
Reactivity Controlled Compression Ignition (RCCI) is a promising, high-efficiency, clean combustion mode for diesel engines. One of the significant limitations of RCCI is its higher unburned hydrocarbon (HC) and carbon monoxide (CO) emissions compared to conventional diesel combustion. After-treatment control of HC and CO emissions is difficult to achieve in RCCI because of lower exhaust gas temperatures associated with the low-temperature combustion (LTC) mode of operation. The present study involves combined experimental and computational fluid dynamic (CFD) investigations to develop the most effective HC and CO control strategy for RCCI. A production light-duty diesel engine is modified to run in RCCI mode by introducing electronic port fuel injection with the replacement of mechanical injectors by the CRDI system. Experimental data were obtained using diesel as HRF (High reactive fuel) and gasoline as LRF (low reactive fuel).
Technical Paper

Analysis of Dual Fuel Hydrogen/Diesel Combustion Varying Diesel and Hydrogen Injection Parameters in a Single Cylinder Research Engine

2024-04-09
2024-01-2363
In the perspective of a reduction of emissions and a rapid decarbonisation, especially for compression ignition engines, hydrogen plays a decisive role. The dual fuel technology is perfectly suited to the use of hydrogen, a fuel characterized by great energy potential. In fact, replacing, at the same energy content, the fossil fuel with a totally carbon free one, a significant reduction of the greenhouse gases, like carbon dioxide and total hydrocarbon, as well as of the particulate matter can be obtained. The dual fuel with indirect injection of gaseous fuel in the intake manifold, involves the problem of hydrogen autoignition. In order to avoid this difficulty, the optimal conditions for the injection of the incoming mixture into the cylinder were experimentally investigated. All combustion processes are carried out on a research engine with optical access. The engine speed has is set at 1500 rpm, while the EGR valve is deactivated.
Technical Paper

Optical diagnostic study on ammonia-diesel and ammonia-PODE dual fuel engines

2024-04-09
2024-01-2362
Ammonia shows promise as an alternative fuel for internal combustion engines (ICEs) in reducing CO2 emissions due to its carbon-free nature and well-established infrastructure. However, certain drawbacks, such as the high ignition energy, the narrow flammability range, and the extremely low laminar flame speed, limit its widespread application. The dual fuel (DF) mode is an appealing approach to enhance ammonia combustion. The combustion characteristics of ammonia-diesel dual fuel mode and ammonia-PODE3 dual fuel mode were experimentally studied using a full-view optical engine and the high-speed photography method. The ammonia energy ratio (ERa) was varied from 40% to 60%, and the main injection energy ratio (ERInj1) and the main injection time (SOI1) were also varied in ammonia-PODE3 mode.
Technical Paper

Experimental Investigation of Internal and External EGR Effects on a CNG-OME Dual-Fuel Engine

2024-04-09
2024-01-2361
Dual-fuel engines powered by renewable fuels provide a potential solution for reducing the carbon footprint and emissions of transportation, contributing to the goal of achieving sustainable mobility. The investigation presented in the following uses a dual-fuel engine concept running on biogas (referred to as CNG in this paper) and the e-fuel polyoxymethylene dimethyl ether (OME). The current study focuses on the effects of exhaust gas rebreathing and external exhaust gas recirculation (EGR) on emissions and brake thermal efficiency (BTE). A four-cylinder heavy-duty engine converted to dual-fuel operation was used to conduct the engine tests at a load point of 1600 min-1 and 9.8 bar brake mean effective pressure (BMEP). The respective shares of high reactivity fuel (HRF, here: OME) and low reactivity fuel (LRF, here: CNG) were varied, as were the external and internal EGR rates and their combinations.
Technical Paper

Combustion Analysis of Hydrogen-DDF Mode Based on OH* Chemiluminescence Images

2024-04-09
2024-01-2367
Hydrogen–diesel dual-fuel combustion processes were visualized using an optically accessible rapid compression and expansion machine (RCEM). A hydrogen-air mixture was introduced into the combustion chamber, and a pilot injection of diesel fuel was used as the ignition source. A small amount of diesel fuel was injected as the pilot fuel at injection pressures of 40, 80, and 120 MPa using a common rail injection system. The injection amounts of diesel fuel were varied as 3, 6, and 13 mm3. The amount of hydrogen was manipulated by varying the total excess air ratio (λtotal) at 3 and 4. The RCEM was operated at a constant speed of 900 rpm, and the in-cylinder pressure and temperature at the top dead center (TDC) were set as 5 MPa and 700 K, respectively. The combustion processes were visualized via direct photography and hydroxyl (OH*) chemiluminescence photography using a high-speed camera and an image intensifier.
Technical Paper

Experimental Study on Engine Performance Fueled with Ammonia-Hydrogen Blend Ignited by Diesel Pilot

2024-04-09
2024-01-2365
The global energy crisis and drastic climate change are continuously promoting the implementation of sustainable energy sources. To meet the emission standards and carbon-neutrality targets in vehicle industry, ammonia is considered to be one of the promising carbon-neutral fuels. However, running the engines on high amounts of ammonia may lead to significantly high ammonia slip. This originates huge safety concerns. Therefore, hydrogen is added in certain ratio with ammonia to promote combustion and reduce ammonia slip. Furthermore, adding diesel as a pilot fuel further facilitates the combustion reactions. This experimental study investigated the effect of different ammonia-hydrogen blend ratios on in-cylinder pressure, heat release rate, cumulative heat release, indicated mean effective pressure (IMEP), indicated thermal efficiency (ITE), CA5 and CA50. This effect of blend ratios was tested for varied diesel pilot amounts and timings.
Technical Paper

Engine-out Gaseous Emissions in a Diesel Engine using Methanol as a Low-carbon Fuel under Dual-fuel Operation

2024-04-09
2024-01-2364
In this study, engine-out gaseous emissions are reviewed using the Fourier Transform Infrared (FTIR) spectroscopy measurement of methanol diesel dual fuel combustion experiments performed in a heavy-duty diesel engine. Comparison to the baseline diesel-only condition shows that methanol-diesel dual fuel combustion leads to higher regulated carbon monoxide (CO) emissions and unburned hydrocarbons (UHC). However, NOX emissions were reduced effectively with increasing methanol substitution rate (MSR). Under dual-fuel operation with methanol, emissions of nitrogen oxides (NOX), including nitric oxide (NO), nitrogen dioxide (NO2), and nitrous oxide (N2O), indicate the potential to reduce the burden of NOX on diesel after-treatment devices such as selective catalytic reduction (SCR).
Technical Paper

Development of an Ultra-Low Carbon Flex Dual-Fuel Ammonia Engine for Heavy-Duty Applications

2024-04-09
2024-01-2368
The work examined the practicality of converting a modern production 6 cylinder 7.7 litre heavy-duty diesel engine for flex dual-fuel operation with ammonia as the main fuel. A small amount of diesel fuel (pilot) was used as an ignition source. Ammonia was injected into the intake ports during the intake stroke, while the original direct fuel injection equipment was retained and used for pilot diesel injection. A bespoke engine control unit was used to control the injection of both fuels and all other engine parameters. The aim was to provide a cost-effective retrofitting technology for existing heavy-duty engines, to enable eco-friendly operation with minimal carbon emissions. The tests were carried out at a baseline speed of 600 rpm for the load range of the engine (10-90%), with minimum pilot diesel quantity and as high as 90% substitution ratio of ammonia for diesel fuel.
Technical Paper

NH 3 and H 2 Impact on Combustion and Emission Characteristics of i-C 8 H 18 Flame under Premixed and Diffusion Conditions

2024-04-09
2024-01-2370
Soot and carbon dioxide released from internal combustion engines became the key issues when using fossil fuels. Ammonia and hydrogen having zero-carbon species can reduce carbon-related emissions and enhance the reliance on renewable fuels. A comparative study of ammonia and hydrogen impact on combustion and emission characteristics of iso-octane flame was performed under different combustion conditions. Arrhenius equation, soot surface reactions, and modified kinetic mechanism were used to study the flame growth, soot nucleation, and surface growth rates. The results show that hydrogen increased the temperature about 20.74 K and 59.30 K, whereas ammonia reduced it about 82.17 K and 66.03 K at premixed and counterflow conditions, respectively. The flame speed of iso-octane was increased 43.83 cm/s by hydrogen and decreased 34.36 cm/s by ammonia. A reduction in CH2O caused a reduction in CO and CO2 emissions.
Technical Paper

A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine

2024-04-09
2024-01-2369
Internal combustion engines, as the dominant power source in the transportation sector and the primary contributor to carbon emissions, face both significant challenges and opportunities in the context of achieving carbon neutral goal. Biofuels, such as biodiesel produced from biomass, and zero-carbon fuel ammonia, can serve as alternative fuels for achieving cleaner combustion in internal combustion engines. The dual-fuel combustion of ammonia-biodiesel not only effectively reduces carbon emissions but also exhibits promising combustion performance, offering a favorable avenue for future applications. However, challenges arise in the form of unburned ammonia (NH3) and N2O emissions. This study, based on a ammonia-biodiesel duel-fuel engine modified from a heavy-duty diesel engine, delves into the impact of adjustments in the two-stage injection strategy on the combustion and emission characteristics.
Technical Paper

Experimental Study of Ammonia Combustion in a Heavy-Duty Diesel Engine Converted to Spark Ignition Operation

2024-04-09
2024-01-2371
Ammonia is one of the carbon-free alternatives considered for power generation and transportation sectors. But ammonia’s lower flame speed, higher ignition energy, and higher nitrogen oxides emissions are challenges in practical applications such as internal combustion engines. As a result, modifications in engine design and control and the use of a secondary fuel to initiate combustion such as natural gas are considered for ammonia-fueled engines. The higher-octane number of methane (the main component in natural gas) and ammonia allows for higher compression ratios, which in turn would increase the engine's thermal efficiency. One simple approach to initiate and control combustion for a high-octane fuel at higher compression ratios is to use a spark plug. This study experimentally investigated the operation of a heavy-duty compression ignition engine converted to spark ignition and ammonia-methane blends.
Technical Paper

Experimental Study on Performance and Emissions of BS VI Complaint EFI Motorbike with Oxygenated Fuel Blends (E0, E10, E20 & M15)

2024-04-09
2024-01-2372
Net-Zero emission ambitions coupled with availability of oxygenated fuels like ethanol encouraged the Government towards commercial implementation of fuels like E20. In this background, a study was taken up to assess the impact of alcohol blended fuels on performance and emission characteristics of a BS-VI complaint motorbike. A single cylinder, 113-cc spark ignition, ECU based electronic fuel injection motorbike was used for conducting tests. Pure gasoline (E0), 10% ethanol-gasoline (E10), 20% ethanol-gasoline (E20) and 15% methanol-gasoline (M15) blends meeting respective IS standards were used as test fuels. The oxygen content of E10, E20 and M15 fuels were 3.7%, 7.4% and 8.35% by weight respectively. Experiments were conducted following worldwide motorcycle test cycle (WMTC) as per AIS 137 standard and wide-open-throttle (WOT) test cycle, using chassis dynamometer.
Technical Paper

Development of Oxygenated Diesel Fuel and Impact on Vehicle Performance

2024-04-09
2024-01-2374
World is moving towards cleaner, greener and energy efficient fuels. The rapid increase in the consumption of petroleum fuel has led to twin problem of air pollution and energy security. India being a developing nation, fuel demand and consumption in various industries, especially in road transport sector has been rising continuously. Fossil fuels are the main source of energy and approximately 85% of domestic need met through import of crude oil. The increasing fuel consumption has created interest for the blending of biofuels in conventional fuel and renewable fuels also. Among biofuels ethanol is one of them and preferable choice for blending in gasoline which is a fuel for spark ignition engines and flex fuel vehicles. As such ethanol/methanol cannot be used in compression-ignition diesel engines without engine modifications due to inherent low cetane number and lubricity of alcohols.
X