Refine Your Search

Search Results

Technical Paper

Analysis of Dual Fuel Hydrogen/Diesel Combustion Varying Diesel and Hydrogen Injection Parameters in a Single Cylinder Research Engine

2024-04-09
2024-01-2363
In the perspective of a reduction of emissions and a rapid decarbonisation, especially for compression ignition engines, hydrogen plays a decisive role. The dual fuel technology is perfectly suited to the use of hydrogen, a fuel characterized by great energy potential. In fact, replacing, at the same energy content, the fossil fuel with a totally carbon free one, a significant reduction of the greenhouse gases, like carbon dioxide and total hydrocarbon, as well as of the particulate matter can be obtained. The dual fuel with indirect injection of gaseous fuel in the intake manifold, involves the problem of hydrogen autoignition. In order to avoid this difficulty, the optimal conditions for the injection of the incoming mixture into the cylinder were experimentally investigated. All combustion processes are carried out on a research engine with optical access. The engine speed has is set at 1500 rpm, while the EGR valve is deactivated.
Technical Paper

Optical diagnostic study on ammonia-diesel and ammonia-PODE dual fuel engines

2024-04-09
2024-01-2362
Ammonia shows promise as an alternative fuel for internal combustion engines (ICEs) in reducing CO2 emissions due to its carbon-free nature and well-established infrastructure. However, certain drawbacks, such as the high ignition energy, the narrow flammability range, and the extremely low laminar flame speed, limit its widespread application. The dual fuel (DF) mode is an appealing approach to enhance ammonia combustion. The combustion characteristics of ammonia-diesel dual fuel mode and ammonia-PODE3 dual fuel mode were experimentally studied using a full-view optical engine and the high-speed photography method. The ammonia energy ratio (ERa) was varied from 40% to 60%, and the main injection energy ratio (ERInj1) and the main injection time (SOI1) were also varied in ammonia-PODE3 mode.
Technical Paper

Experimental Investigation of Internal and External EGR Effects on a CNG-OME Dual-Fuel Engine

2024-04-09
2024-01-2361
Dual-fuel engines powered by renewable fuels provide a potential solution for reducing the carbon footprint and emissions of transportation, contributing to the goal of achieving sustainable mobility. The investigation presented in the following uses a dual-fuel engine concept running on biogas (referred to as CNG in this paper) and the e-fuel polyoxymethylene dimethyl ether (OME). The current study focuses on the effects of exhaust gas rebreathing and external exhaust gas recirculation (EGR) on emissions and brake thermal efficiency (BTE). A four-cylinder heavy-duty engine converted to dual-fuel operation was used to conduct the engine tests at a load point of 1600 min-1 and 9.8 bar brake mean effective pressure (BMEP). The respective shares of high reactivity fuel (HRF, here: OME) and low reactivity fuel (LRF, here: CNG) were varied, as were the external and internal EGR rates and their combinations.
Technical Paper

Combustion Analysis of Hydrogen-DDF Mode Based on OH* Chemiluminescence Images

2024-04-09
2024-01-2367
Hydrogen–diesel dual-fuel combustion processes were visualized using an optically accessible rapid compression and expansion machine (RCEM). A hydrogen-air mixture was introduced into the combustion chamber, and a pilot injection of diesel fuel was used as the ignition source. A small amount of diesel fuel was injected as the pilot fuel at injection pressures of 40, 80, and 120 MPa using a common rail injection system. The injection amounts of diesel fuel were varied as 3, 6, and 13 mm3. The amount of hydrogen was manipulated by varying the total excess air ratio (λtotal) at 3 and 4. The RCEM was operated at a constant speed of 900 rpm, and the in-cylinder pressure and temperature at the top dead center (TDC) were set as 5 MPa and 700 K, respectively. The combustion processes were visualized via direct photography and hydroxyl (OH*) chemiluminescence photography using a high-speed camera and an image intensifier.
Technical Paper

Experimental Study on Engine Performance Fueled with Ammonia-Hydrogen Blend Ignited by Diesel Pilot

2024-04-09
2024-01-2365
The global energy crisis and drastic climate change are continuously promoting the implementation of sustainable energy sources. To meet the emission standards and carbon-neutrality targets in vehicle industry, ammonia is considered to be one of the promising carbon-neutral fuels. However, running the engines on high amounts of ammonia may lead to significantly high ammonia slip. This originates huge safety concerns. Therefore, hydrogen is added in certain ratio with ammonia to promote combustion and reduce ammonia slip. Furthermore, adding diesel as a pilot fuel further facilitates the combustion reactions. This experimental study investigated the effect of different ammonia-hydrogen blend ratios on in-cylinder pressure, heat release rate, cumulative heat release, indicated mean effective pressure (IMEP), indicated thermal efficiency (ITE), CA5 and CA50. This effect of blend ratios was tested for varied diesel pilot amounts and timings.
Technical Paper

Engine-out Gaseous Emissions in a Diesel Engine using Methanol as a Low-carbon Fuel under Dual-fuel Operation

2024-04-09
2024-01-2364
In this study, engine-out gaseous emissions are reviewed using the Fourier Transform Infrared (FTIR) spectroscopy measurement of methanol diesel dual fuel combustion experiments performed in a heavy-duty diesel engine. Comparison to the baseline diesel-only condition shows that methanol-diesel dual fuel combustion leads to higher regulated carbon monoxide (CO) emissions and unburned hydrocarbons (UHC). However, NOX emissions were reduced effectively with increasing methanol substitution rate (MSR). Under dual-fuel operation with methanol, emissions of nitrogen oxides (NOX), including nitric oxide (NO), nitrogen dioxide (NO2), and nitrous oxide (N2O), indicate the potential to reduce the burden of NOX on diesel after-treatment devices such as selective catalytic reduction (SCR).
Technical Paper

Development of an Ultra-Low Carbon Flex Dual-Fuel Ammonia Engine for Heavy-Duty Applications

2024-04-09
2024-01-2368
The work examined the practicality of converting a modern production 6 cylinder 7.7 litre heavy-duty diesel engine for flex dual-fuel operation with ammonia as the main fuel. A small amount of diesel fuel (pilot) was used as an ignition source. Ammonia was injected into the intake ports during the intake stroke, while the original direct fuel injection equipment was retained and used for pilot diesel injection. A bespoke engine control unit was used to control the injection of both fuels and all other engine parameters. The aim was to provide a cost-effective retrofitting technology for existing heavy-duty engines, to enable eco-friendly operation with minimal carbon emissions. The tests were carried out at a baseline speed of 600 rpm for the load range of the engine (10-90%), with minimum pilot diesel quantity and as high as 90% substitution ratio of ammonia for diesel fuel.
Technical Paper

NH 3 and H 2 Impact on Combustion and Emission Characteristics of i-C 8 H 18 Flame under Premixed and Diffusion Conditions

2024-04-09
2024-01-2370
Soot and carbon dioxide released from internal combustion engines became the key issues when using fossil fuels. Ammonia and hydrogen having zero-carbon species can reduce carbon-related emissions and enhance the reliance on renewable fuels. A comparative study of ammonia and hydrogen impact on combustion and emission characteristics of iso-octane flame was performed under different combustion conditions. Arrhenius equation, soot surface reactions, and modified kinetic mechanism were used to study the flame growth, soot nucleation, and surface growth rates. The results show that hydrogen increased the temperature about 20.74 K and 59.30 K, whereas ammonia reduced it about 82.17 K and 66.03 K at premixed and counterflow conditions, respectively. The flame speed of iso-octane was increased 43.83 cm/s by hydrogen and decreased 34.36 cm/s by ammonia. A reduction in CH2O caused a reduction in CO and CO2 emissions.
Technical Paper

A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine

2024-04-09
2024-01-2369
Internal combustion engines, as the dominant power source in the transportation sector and the primary contributor to carbon emissions, face both significant challenges and opportunities in the context of achieving carbon neutral goal. Biofuels, such as biodiesel produced from biomass, and zero-carbon fuel ammonia, can serve as alternative fuels for achieving cleaner combustion in internal combustion engines. The dual-fuel combustion of ammonia-biodiesel not only effectively reduces carbon emissions but also exhibits promising combustion performance, offering a favorable avenue for future applications. However, challenges arise in the form of unburned ammonia (NH3) and N2O emissions. This study, based on a ammonia-biodiesel duel-fuel engine modified from a heavy-duty diesel engine, delves into the impact of adjustments in the two-stage injection strategy on the combustion and emission characteristics.
Technical Paper

Experimental Study of Ammonia Combustion in a Heavy-Duty Diesel Engine Converted to Spark Ignition Operation

2024-04-09
2024-01-2371
Ammonia is one of the carbon-free alternatives considered for power generation and transportation sectors. But ammonia’s lower flame speed, higher ignition energy, and higher nitrogen oxides emissions are challenges in practical applications such as internal combustion engines. As a result, modifications in engine design and control and the use of a secondary fuel to initiate combustion such as natural gas are considered for ammonia-fueled engines. The higher-octane number of methane (the main component in natural gas) and ammonia allows for higher compression ratios, which in turn would increase the engine's thermal efficiency. One simple approach to initiate and control combustion for a high-octane fuel at higher compression ratios is to use a spark plug. This study experimentally investigated the operation of a heavy-duty compression ignition engine converted to spark ignition and ammonia-methane blends.
Technical Paper

Experimental Study on Performance and Emissions of BS VI Complaint EFI Motorbike with Oxygenated Fuel Blends (E0, E10, E20 & M15)

2024-04-09
2024-01-2372
Net-Zero emission ambitions coupled with availability of oxygenated fuels like ethanol encouraged the Government towards commercial implementation of fuels like E20. In this background, a study was taken up to assess the impact of alcohol blended fuels on performance and emission characteristics of a BS-VI complaint motorbike. A single cylinder, 113-cc spark ignition, ECU based electronic fuel injection motorbike was used for conducting tests. Pure gasoline (E0), 10% ethanol-gasoline (E10), 20% ethanol-gasoline (E20) and 15% methanol-gasoline (M15) blends meeting respective IS standards were used as test fuels. The oxygen content of E10, E20 and M15 fuels were 3.7%, 7.4% and 8.35% by weight respectively. Experiments were conducted following worldwide motorcycle test cycle (WMTC) as per AIS 137 standard and wide-open-throttle (WOT) test cycle, using chassis dynamometer.
Technical Paper

Development of Oxygenated Diesel Fuel and Impact on Vehicle Performance

2024-04-09
2024-01-2374
World is moving towards cleaner, greener and energy efficient fuels. The rapid increase in the consumption of petroleum fuel has led to twin problem of air pollution and energy security. India being a developing nation, fuel demand and consumption in various industries, especially in road transport sector has been rising continuously. Fossil fuels are the main source of energy and approximately 85% of domestic need met through import of crude oil. The increasing fuel consumption has created interest for the blending of biofuels in conventional fuel and renewable fuels also. Among biofuels ethanol is one of them and preferable choice for blending in gasoline which is a fuel for spark ignition engines and flex fuel vehicles. As such ethanol/methanol cannot be used in compression-ignition diesel engines without engine modifications due to inherent low cetane number and lubricity of alcohols.
Technical Paper

Numerical Study of a Six-Stroke Gasoline Compression Ignition (6S-GCI) Engine Combustion with Oxygenated Fuels

2024-04-09
2024-01-2373
A numerical investigation of a six-stroke direct injection compression ignition engine operation in a low temperature combustion (LTC) regime is presented. The fuel employed is a gasoline-like oxygenated fuel consisting of 90% isobutanol and 10% diethyl ether (DEE) by volume to match the reactivity of conventional gasoline with octane number 87. The computational simulations of the in-cylinder processes were performed using a high-fidelity multidimensional in-house 3D CFD code (MTU-MRNT) with improved spray-sub models and CHEMKIN library. The combustion chemistry was described using a two-component (isobutanol and DEE) fuel model whose oxidation pathways were given by a reaction mechanism with 177 species and 796 reactions.
Technical Paper

Performance Evaluation of High Octane Gasoline Fuel(s) on High Compression Ratio (HCR) Motorcycle – Based on Chassis Dynamometer Test

2024-04-09
2024-01-2375
The present study aims to determine the comparative performance evaluation in terms of fuel economy (kmpl) and wide open throttle (WOT) power derived from set of different blends of high octane gasoline fuel(s) i.e., Neat Gasoline (E0), E10 & E20 (With different dosages of additives) in high compression ratio (HCR) motorcycle on chassis dynamometer facility. With the Government of India focus on use of alcohol as co-blend of gasoline with the endeavour to save foreign exchange and also to reduce greenhouse gases (GHG) emissions. The commercially available blended fuels, E10 & E20, have high research octane number (RON, 92-100) and as per the available literature high RON fuel have the better anti-knocking tendencies thereby lead to higher fuel economy. There are various routes to formulate high octane fuel (refining technologies, additive approach & ethanol blending route) in the range of 92-100 octane number which are currently commercialized in Indian market.
Technical Paper

Research on the Pollutant Reduction Control for P2.5 Hybrid Electric Vehicles

2024-04-09
2024-01-2376
The strategy for emission reduction in the P2.5 hybrid system involves the optimization of engine torque, engine speed, catalyst heat duration, and motor torque regulation in a coordinated manner. In addition to employing traditional engine control methods used in HEV models, unique approaches can be utilized to effectively manage emissions. The primary principle is to ensure that the engine operates predominantly under steady-state conditions or limits its load to regulate emissions levels. The main contributions of this paper are as follows: The first is the optimization of catalyst heating stage. During the catalyst heating stage, the system divides it into one or two stages. In the first stage, the vehicle is driven by the motor while keeping the engine idle. This approach stabilizes catalyst heating and prevents fluctuations in air-fuel ratio caused by speed and load changes that could potentially worsen emissions performance.
Technical Paper

A Study on Overcoming Unavailable Backward Driving and a New Fail-Safe Strategy for R-Gearless (P)HEV System

2024-04-09
2024-01-2170
Recently, as part of the effort to enhance fuel efficiency and reduce costs for eco-friendly vehicles, the R-gearless system has been implemented in the TMED (P)HEV system. Due to the removal of the reverse gear, a distinct backward driving method needs to be developed, allowing the Electronic Motor (e-Motor) system to facilitate backward movement in the TMED (P)HEV system. However, the capability of backward driving with the e-Motor is limited because of partial failure in the high-voltage system of an R-gearless system. Thus, we demonstrate that it is possible to improve backward driving problems by applying a new fail-safe strategy. In the event of a high-voltage battery system failure, backward driving can be achieved using the e-Motor with constant voltage control by the Hybrid Starter Generator (HSG), as proposed in this study.
Technical Paper

Investigating Route Gradient and Thermal Demand on Hydrogen Fuel Cell Electric Bus Energy Consumption

2024-04-09
2024-01-2176
In 2022 in the UK, the transport sector was the largest single contributing sector to greenhouse gas emissions, responsible 34% of all territorial carbon dioxide emissions [1]. In the UK there is growing uptake in zero emission powertrain technologies, with the most promising variants based on battery electric or hydrogen fuel cell electric configurations. Given the limited number of fuel cell electric buses currently in operation in Europe, vehicle models and simulations are one of the few methods available to estimate energy consumption and provide the necessary increased confidence in operating range. This paper investigates the impact of route characteristics, thermal demand and coefficient of performance of different heat source configurations on the operational energy consumption of fuel cell electric buses. Using a MATLAB/Simulink model, the total energy demand of a vehicle operating in different route/elevation profiles is considered.
Technical Paper

Influence of Working Conditions and Operating Parameters on the Energy Consumption of a Full-Electric Bus. Experimental Assessment

2024-04-09
2024-01-2174
Given the growing interest in improving the efficiency of the bus fleet in public transportation systems, this paper presents an analysis of the energy consumption of a battery electric bus. During the experimental campaign, a battery electric bus was loaded using sand payloads to simulate the passenger load on board and followed another bus during regular service. Data related to the energy consumed by various bus utilities were published on the vehicle’s CAN network using the FMS standard and sampled at a frequency of 1 Hz. The collected experimental data were initially analyzed on a daily basis and then on a per-route basis. The results reveal the breakdown of energy consumption among various utilities over the course of each day of the experiment, highlighting those responsible for the highest energy consumption.
Technical Paper

V2X Communication Protocols to Enable EV Battery Capacity Measurement: A Review

2024-04-09
2024-01-2168
The US EPA and the California Air Resources Board (CARB) require electric vehicle range to be determined according to the Society of Automotive Engineers (SAE) surface vehicle recommended practice J1634 - Battery Electric Vehicle Energy Consumption and Range Test Procedure. In the 2021 revision of the SAE J1634, the Short Multi-Cycle Test (SMCT) was introduced. The proposed testing protocol eases the chassis dynamometer test burden by performing a 2.1-hour drive cycle on the dynamometer, followed by discharging the remaining battery energy into a battery cycler to determine the Useable Battery Energy (UBE). Opting for a cycler-based discharge is financially advantageous due to the extended operating time required to fully deplete a 70-100kWh battery commonly found in Battery Electric Vehicles (BEVs).
Technical Paper

Development of a Dual Motor Beam eAxle for Medium Duty Commercial Vehicle Application

2024-04-09
2024-01-2162
Considering the current trend towards the electrification of commercial vehicles, the development of Beam eAxle solutions has become necessary. The utilization of an electric drive unit in heavy-duty solid axle-based commercial vehicles presents unique and demanding challenges. These include the necessity for elevated peak and continuous torque while meeting packaging constraints, structural integrity requirements, and extended service life. One such solution was developed by BorgWarner to address these challenges. This paper offers a comprehensive overview of the design and development process undertaken for this Dual Motor Beam eAxle system. This includes the initial comparison of various eAxle solutions, the specifications of components selected for this design, and the initial results from dyno and vehicle development.
X