Refine Your Search

Search Results

Technical Paper

Estimation of Excavator Manipulator Position Using Neural Network-Based Vision System

2016-09-27
2016-01-8122
A neural network-based computer vision system is developed to estimate position of an excavator manipulator in real time. A camera is used to capture images of a manipulator, and the images are down-sampled and used to train a neural network. Then, the trained neural network can estimate the position of the excavator manipulator in real time. To study the feasibility of the proposed system, a webcam is used to capture images of an excavator simulation model and the captured images are used to train a neural network. The simulation results show that the developed neural network-based computer vision system can estimate the position of the excavator manipulator with an acceptable accuracy.
Technical Paper

High Accuracy Assembly of Large Aircraft Components Using Coordinated Arm Robots

2016-09-27
2016-01-2133
Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of ±0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact has designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes.
Technical Paper

Magnetic Safety Base for Automated Riveting and Bolting

2016-09-27
2016-01-2087
There is an ever-present risk for the lower ram on a riveting machine to suffer a damaging collision with aircraft parts during automated fastening processes. The risk intensifies when part frame geometry is complex and fastener locations are close to part features. The lower anvil must be led through an obstructive environment, and there is need for crash protection during side-to-side and lowering motion. An additional requirement is stripping bolt collars using the downward motion of the lower ram, which can require as much as 2500 pounds of pulling force. The retention force on the lower anvil would therefore need to be in excess of 2500 pounds. To accomplish this a CNC controlled electromagnetic interface was developed, capable of pulling with 0-3400 pounds. This electromagnetic safety base releases when impact occurs from the sides or during downward motion (5 sided crash protection), and it retains all riveting and bolting functionality.
Technical Paper

Method of Producing Composite Powder EP648-Al2O3 for Selective Laser Melting Usage

2016-09-27
2016-01-2117
The development of Additive Technologies (SLS/SLM, EBM, DMD) suggests the increase of range expansion of materials used. One of the most promising directions is products manufacturing from composite materials. The technology of composite micro-powders production on the basis of heat-resistant nickel alloy EP648 and Al2O3 is proposed. The aim of this research is to develop a method of producing composite micropowders for additive technology application. This method is based on modification of the metal micropowders surface by the second phase in a planetary mixer (mechanochemical synthesis).The obtained composite micropowders are compared with powders which are recommended for selective laser melting usage (produced by MTT Technology). The equipment used in the research: planetary mixer, scanning electron microscopy (SEM), optical granulomorphometer Occio 500nano.
Technical Paper

Method of Production of Composite Powder Cu-Ni Suitable for Use in Selective Laser Melting

2016-09-27
2016-01-2121
The copper-nickel alloys are widely used in various industries. The adding of nickel significantly enhances mechanical properties, corrosion resistance and thermoelectric properties of copper. The technology was proposed of production of copper-nickel composite micro-powders by the gaseous deposition of nickel on the surface of copper powder. The vaporization of nickel was implemented by using magnetron. The relationship between mode of processing and the ratio of phases in the powder was investigated. The proposed method allows to modify the powder surface without deformation of the particles. The possibility of using of obtained composite powder in selective laser melting (SLM) was evaluated. It is assumed that the structure of the obtained composite material (SLM) will have inclusions of nickel and continuous chain of copper. This structure will have high mechanical properties and high electrical conductivity.
Journal Article

Heavy Vehicle Hardware-in-the-Loop Automatic Emergency Braking Simulation with Experimental Validation

2016-09-27
2016-01-8010
Field testing of Automatic Emergency Braking (AEB) systems using real actual heavy trucks and buses is unavoidably limited by the dangers and expenses inherent in crash-imminent scenarios. For this paper, a heavy vehicle is defined as having a gross vehicle weight rating (GVWR) that exceeds 4536 kg (10,000 lbs.). High fidelity Hardware-in-the-Loop (HiL) simulation systems have the potential to enable safe and accurate laboratory testing and evaluation of heavy vehicle AEB systems. This paper describes the setup and experimental validation of such a HiL simulation system. An instrumented Volvo tractor-trailer equipped with a Bendix Wingman Advanced System, including the FLR20 forward looking radar and AEB system, was put through a battery of different types of track tests to benchmark the AEB performance.
Technical Paper

Analysis and Design Validation of Medium Duty Truck Cooling System

2016-09-27
2016-01-8073
Various 1D simulation tools (KULI & LMS Amesim) and 3D simulation tools (ANSYS FLUENT®) can be used to size and evaluate truck cooling system design. In this paper, ANSYS FLUENT is used to analyze and validate the design of medium duty truck cooling systems. LMS Amesim is used to verify the quality of heat exchanger input data. This paper discusses design and simulation of parent and derivative trucks. As a first step, the parent truck was modeled in FLUENT (using standard' k - ε model) with detailed fan and underhood geometry. The fan is modeled using Multiple Reference Frame (MRF) method. Detailed geometry of heat exchangers is skipped. The heat exchangers are represented by regular shape cell zones with porous medium and dual cell heat exchanger models to account for their contributions to the entire system in both flow and temperature distribution. Good agreement is observed between numerical and experimental engine out temperatures at different engine operating conditions.
Technical Paper

Evaluation of Coastdown Analysis Techniques to Determine Aerodynamic Drag of Heavy-Duty Vehicles

2016-09-27
2016-01-8151
To investigate the feasibility of various aerodynamic test procedures for the Phase 2 Greenhouse Gas (GHG) Regulations for heavy-duty vehicles in the United States, the US Environmental Protection Agency conducted, through Southwest Research Institute (SwRI), coastdown testing of several heavy-duty tractors matched to a conventional 53-foot dry-van trailer. Three vehicle configurations were tested, two of which included common trailer drag-reduction technologies. Air speed was measured onboard the vehicle, and wind conditions were measured using a weather station placed along the road side. Tests were performed on a rural road in Texas. One vehicle configuration was tested over several days to evaluate day-to-day repeatability and the influence of changing wind conditions. Data on external sources of road forces, such as grade and speed dependence of tire rolling resistance, were collected separately and incorporated into the analysis.
Journal Article

Fuel-Savings from Aerodynamic Efficiency Improvements for Combination Tractor-Trailers Relative to Vehicle Speed

2016-09-27
2016-01-8133
Commercial, class-8 tractor-trailers were tested to develop a relationship between vehicle speed and fuel savings associated with trailer aerodynamic technologies representative of typical long-haul freight applications. This research seeks to address a concern that many long-distance U.S. freight companies hold that, as vehicle speed is reduced, the fuel savings benefits of aerodynamic technologies are not realized. In this paper, the reductions in fuel consumption were measured using the SAE J1231 test method and thru-engine fueling rates recorded from the vehicle’s electronic data stream. Constant speed testing was conducted on road at different speeds and corresponding testing was conducted on track to confirm results. Data was collected at four (4) vehicle speeds: 35, 45, 55, and 62 miles per hour. Two different trailer aerodynamic configurations were evaluated relative to a baseline tractor trailer.
Journal Article

Use of Full Coupling of Aerodynamics and Vehicle Dynamics for Numerical Simulation of the Crosswind Stability of Ground Vehicles

2016-09-27
2016-01-8148
The prediction in the design phase of the stability of ground vehicles subject to transient crosswinds become of increased concern with drag reduced shapes, lighter vehicles as well as platooning. The objective of this work is to assess the order of model complexity needed in numerical simulations to capture the behavior of a ground vehicle passing through a transient crosswind. The performance of a full-dynamic coupling between aerodynamic and vehicle dynamic simulations, including a driver model, is evaluated. In the simulations a feedback from the vehicle dynamics into the aerodynamic simulation is performed in every time step. In the work, both the vehicle dynamic response and the aerodynamic forces and moments are studied. The results are compared to a static coupling approach on a set of different vehicle geometries. Five car-type geometries and one simplified bus geometry are evaluated.
Journal Article

Towards a Cyber Assurance Testbed for Heavy Vehicle Electronic Controls

2016-09-27
2016-01-8142
Cyber assurance of heavy trucks is a major concern with new designs as well as with supporting legacy systems. Many cyber security experts and analysts are used to working with traditional information technology (IT) networks and are familiar with a set of technologies that may not be directly useful in the commercial vehicle sector. To help connect security researchers to heavy trucks, a remotely accessible testbed has been prototyped for experimentation with security methodologies and techniques to evaluate and improve on existing technologies, as well as developing domain-specific technologies. The testbed relies on embedded Linux-based node controllers that can simulate the sensor inputs to various heavy vehicle electronic control units (ECUs). The node controller also monitors and affects the flow of network information between the ECUs and the vehicle communications backbone.
Journal Article

Effect of Steering Assistance Control by External Information Feedback Control and Chassis Control

2016-09-27
2016-01-8104
In this study, we report on the development of a steering assistance control system that feeds back information on the outside environment collected by laser sensors to the vehicle driver. The system consists of an emergency avoidance assistance control program that performs obstacle detection and avoidance, as well as a cornering assistance control program that operates by detecting the white lines painted on roadways. Driving simulator experiments were conducted in order to confirm the effectiveness of these functions, as well as to improve understanding of the synergistic effects of the steering assistance and chassis control functions: camber angle control and derivative steering assistance (DSA) control.
Journal Article

Elicitation Practices That Can Decrease Vulnerability to Off-Nominal Behaviors: Lessons from using the Causal Component Model

2016-09-27
2016-01-8109
When specifying an embedded system-to-be, a key consideration is how the embedded system will interact with its operating environment. Of particular concern is the system's vulnerability to Off-Nominal Behaviors (ONB) from human interaction. ONB vulnerability can result in human operators placing the system in an undesired state through an unforeseen sequence of events. This, in turn, can have an adverse effect on the system’s quality. Reducing ONB vulnerability can be challenging because human behavior can be unpredictable and stakeholders have a natural tendency to assume the system will be used in a predictable, nominal, manner. One approach to reducing ONB vulnerability is to specify the system as "fool-proof" as possible, during the requirements phase, where access to domain experts is at its most convenient.
Journal Article

Dynamic Analysis of the Lubrication in a Wet Clutch of a Hydromechanical Variable Transmission

2016-09-27
2016-01-8099
The paper investigates the oil flow through a multi plate clutch for a hydro-mechanical variable transmission under actual operating conditions. The analysis focuses on the numerical approach for the accurate prediction of the transient behavior of the lubrication in the gear region: the trade-off between prediction capabilities of the numerical model and computational effort is addressed. The numerical simulation includes the full 3D geometry of the clutch and the VOF multi-phase approach is used to calculate the oil distribution in the clutch region under different relative rotating velocities. Furthermore, the lubrication of the friction disks is calculated for different clutch actuation conditions, i.e. not-engaged and engaged positions. The influence of different geometrical features of the clutch lubricating circuit on the oil distribution is also determined.
Journal Article

Hydraulic Lash Adjuster Compatible Engine Brake

2016-09-27
2016-01-8063
Current heavy duty diesel valvetrains are not able to utilize hydraulic lash adjusters (HLA) in conjunction with an engine brake. During a braking event the engine brake introduces substantial lash into the vehicle valvetrain. The HLA reacts by pumping out to take up the lash encountered during braking, thereby preventing the valves from properly seating at the end of the cycle. Jacobs Vehicle Systems has developed a new mechanism to allow the inclusion of an engine brake into a valvetrain equipped with hydraulic lash adjusters. The fulcrum system maintains a load on the hydraulic lash adjuster during engine brake operation preventing the HLA from extending. HLA are appealing to engine manufacturers because they allow for simpler manufacturing, less maintenance, reduced NVH and valve motion enhancements. This paper describes the design, simulation and testing of the lashless valvetrain with engine brake including the next steps in the development of the valvetrain.
Journal Article

Track-Based Aerodynamic Testing of a Heavy-Duty Vehicle: Coast-Down Measurements

2016-09-27
2016-01-8152
In an effort to support Phase 2 of Greenhouse Gas Regulations for Heavy-Duty Vehicles in the United States, a track-based test program was jointly supported by Transport Canada (TC), Environment and Climate Change Canada (ECCC), the U.S. Environmental Protection Agency (EPA), and the National Research Council Canada (NRC) to assess aerodynamic evaluation methodologies proposed by the EPA and to provide a site-verification exercise against a previous test campaign with the same vehicle. Coast-down tests were conducted with a modern aerodynamic tractor matched to a conventional 16.2 m (53 ft) dry-van trailer, and outfitted with two drag reduction technologies. Enhanced wind-measurement instrumentation was introduced, consisting of a vehicle-mounted fast-response pressure probe and track-side sonic anemometers that, when used in combination, provided improved reliability for the measurements of wind conditions experienced by the vehicle.
Journal Article

Effect of the Frontal Edge Radius in a Platoon of Bluff Bodies

2016-09-27
2016-01-8149
This paper investigates the effect of the frontal edge radius of the Generalized European Transport System (GETS) model on the aerodynamic behavior of three different vehicles in a platoon. Due to the increasing awareness around harmful gases and depleting oil sources, more sustainable transport systems are needed. The efficiency of long-haul, heavy-duty vehicles can be increased by driving in platoon formation in order to decrease aerodynamic drag and to increase fuel mileage. The drag behavior of drafting vehicles is already studied but differences in aerodynamic drag reductions occur on the trailing vehicle. Some studies indicate a drag increase while others predict a drag decrease. In this study, a numerical investigation was performed solving Reynolds Averaged Navier-Stokes equations with the aid of a commercial package. Four different inter-vehicle distances were tested for the vehicles with several different frontal edge radii.
Journal Article

A Novel Kinematic Model of a Steerable Tire for Examining Kingpin Moment during Low-Speed-Large-Steering-Angle Cornering

2016-09-27
2016-01-8030
As long as a tire steers about a titled kingpin pivot, the point coming in contact with the road moves along its perimeter. This movement affects the determination of kingpin moments caused by the tire forces, especially for large steering angles. The movement, however, has been neglected in the literature on the steerable-tire-kinematics-related topics. In this investigation, the homogeneous transformation is employed to develop a kinematic model of a steering tire in which the instantaneous ground-contact point on the tire is considered. The moments about the kingpin axis caused by tire forces are then computed based on the kinematics. A four-wheel-car model is constructed for determining the kingpin moment of steering system during the low-speed cornering maneuver. The result shows that the displacement of the ground-contact point along the tire perimeter is significant for large steering angles.
Journal Article

Investigating the Parameterization of Dugoff Tire Model Using Experimental Tire-Ice Data

2016-09-27
2016-01-8039
Tire modeling plays an important role in the development of an Active Vehicle Safety System. As part of a larger project that aims at developing an integrated chassis control system, this study investigates the performance of a 19” all-season tire on ice for a sport utility vehicle. A design of experiment has been formulated to quantify the effect of operational parameters, specifically: wheel slip, normal load, and inflation pressure on the tire tractive performance. The experimental work was conducted on the Terramechanics Rig in the Advanced Vehicle Dynamics Laboratory at Virginia Tech. The paper investigates an approach for the parameterization of the Dugoff tire model based on the experimental data collected. Compared to other models, this model is attractive in terms of its simplicity, low number of parameters, and easy implementation for real-time applications.
Journal Article

A Novel Technique to Determine Free-Stream Velocity from Ground-Based Anemometric Measurements During Track Tests

2016-09-27
2016-01-8023
A novel method was developed to predict the free-stream velocity experienced by a traveling vehicle based on track-side anemometric measurements. The end objective of this research was to enhance the reliability of the prediction of free-stream conditions in order to improve the accuracy of aerodynamic drag coefficient (CD) assessments from track tests of surface vehicles. Although the technique was applied to heavy-duty vehicles in the present work, it is equally applicable to any vehicle type. The proposed method is based on Taylor’s hypothesis, a principle applied in fluid mechanics to convert temporal signals into the spatial domain. It considers that the turbulent wind velocity fluctuations measured at one point are due to the "passage of an unchanging pattern of turbulent motion over the point". The method is applied to predict the wind velocity that the vehicle will experience as it encounters a wind pattern detected earlier by an anemometer located upwind.
X