Refine Your Search

Search Results

Technical Paper

A Novel Quasi-Dimensional Model for Transient Mixing Prediction in Two-Phase Multicomponent Sprays under Flash-Boiling Conditions

2024-04-09
2024-01-2086
A novel one-dimensional multiphase and multicomponent spray model - hereafter referred to as the Kattke-Weigand model - has been developed to predict the penetration length of both vapor and liquid gasoline sprays under flash-boiling conditions, such as superheated injections. Its formulation is based on mass and momentum equations for unsteady jets and is therefore capable of capturing dynamic effects. Experiments were conducted in a constant volume chamber using various ambient and fuel temperature conditions and a six-hole GDI injector with a separated jet. Macroscopic spray parameters were extracted from the measurements to verify the model's ability to predict both liquid and vapor penetration length and the corresponding spray angles. Apart from the separated jet of the injector used, the other five jets interact strongly with each other under flash boiling conditions, resulting in spray collapse, and thus affecting spray characteristics.
Technical Paper

Development and Validation of a Reduced Chemical Kinetic Mechanism of Dimethyl Carbonate and Ethylene Carbonate

2024-04-09
2024-01-2085
With the rapid development of electric vehicles, the demands for lithium-ion batteries and advanced battery technologies are growing. Today, lithium-ion batteries mainly use liquid electrolytes, containing organic compounds such as dimethyl carbonate and ethylene carbonate as solvents for the lithium salts. However, when thermal runaway occurs, the electrolyte decomposes, venting combustible gases that could readily be ignited when mixed with air and leading to pronounced heat release from the combustion of the mixture. So far, the chemical behavior of electrolytes during thermal runaway in lithium-ion batteries is not comprehensively understood. Well-validated compact chemical kinetic mechanisms of the electrolyte components are required to describe this process in CFD simulations. In this work, submechanisms of dimethyl carbonate and ethylene carbonate were developed and adopted in the Ansys Model Fuel Library (MFL).
Technical Paper

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

2024-04-09
2024-01-2082
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy.
Technical Paper

Development of a 0D/1D Model System for the Cycle-to-Cycle Variation of High Tumble Spark Ignition Engines

2024-04-09
2024-01-2083
Due to increasingly strict emission regulations, the demand for internal combustion engine performance has enhanced. Combustion stability is one of the main research focuses due to its impacts on the emission level. Moreover, the combustion instability becomes more significant under the lean combustion concept, which is an essential direction of internal combustion engine development. The combustion instability is represented as the cycle-to-cycle variation. This paper presents a quasi-dimensional model system for predicting the cycle-to-cycle variation in 0D/1D simulation. The modeling is based on the cause-and-effect chain of cycle-to-cycle variation of spark ignition engines, which is established through the flow field analysis of large eddy simulation results [1]. In the model system, varying parameters are turbulent kinetic energy, the distribution of air-to-fuel equivalence ratio, and the in-cylinder velocity field.
Technical Paper

Numerical Study of an EGR Dilution in a Pre-Chamber Spark Ignited Engine Fuelled by Natural Gas

2024-04-09
2024-01-2081
Exhaust gas recirculation (EGR) is a proven strategy for the reduction of NOX emissions in spark ignited (SI) engines and compression ignition engines, especially in lean burn conditions where the increase of thermal efficiency is obtained. The dilution level of the mixture with EGR is in a conventional SI engine limited by the increase of combustion instability (CoV IMEP). A possible method to extend the EGR dilution level and ensure stable combustion is the implementation of an active pre-chamber combustion system. The pre-chamber spark ignited (PCSI) engine enables fast and stable combustion of lean mixtures in the main chamber by utilizing high ignition energy of multiple flame jets penetrating from the pre-chamber to the main chamber. In this paper, as an initial research step, a numerical analysis is performed by employing the 0D/1D simulation model, validated with the initial experimental and 3D-CFD results.
Technical Paper

Oxygenated Fuels as Reductants for Lean NOx Trap Regeneration

2024-04-09
2024-01-2132
The push for environmental protection and sustainability has led to strict emission regulations for automotive manufacturers as evident in EURO VII and 2026 EPA requirements. The challenge lies in maintaining fuel efficiency and simultaneously reducing the carbon footprint while meeting future emission regulations. Alcohol (primarily methanol, ethanol, and butanol) and ether (dimethyl ether) fuels, owing to their comparable energy density to existing fuels, the comparative ease of handling, renewable production, and suitable emission characteristics may present an attractive drop-in replacement, fully or in part as an additive, to the gasoline/diesel fuels, without extensive modifications to the engine geometry. Additionally, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines.
Technical Paper

Combustion Characteristics of Aluminum Oxide Nanoparticles-Diesel Blends in a Constant Volume Chamber

2024-04-09
2024-01-2125
This study investigates the effects on combustion characteristics of aluminum oxide (Al2O3) nanoparticles as additives for diesel in a constant volume chamber. Depending on the amount of aluminum oxide nanoparticles added, the test fuels are labeled as DA25, DA50, and DA100, which represent 25, 50, and 100 mg of aluminum oxide nanoparticles into 1 L of pure diesel, respectively. The ambient temperature for this experiment ranged from 800 to 1200 K to cover conventional and low-temperature combustion regimes. The oxygen concentration ranged from 21% to 13% to simulate different levels of exhaust gas recirculation (EGR). Based on in-cylinder pressure traces and results of apparent heat release rates, there was an improvement in combustion characteristics with the addition of aluminum oxide nanoparticles.
Technical Paper

Investigation of Combustion Characteristics of a Fuel Blend Consisting of Methanol and Ignition Improver, Compared to Diesel Fuel and Pure Methanol

2024-04-09
2024-01-2122
The increasing need to reduce greenhouse gas emissions and shift away from fossil fuels has raised an interest for methanol. Methanol can be produced from renewable sources and can drastically lower soot emissions from compression ignition engines (CI). As a result, research and development efforts have intensified focusing on the use of methanol as a replacement for diesel in CI engines. The issue with methanol lies in the fact that methanol is challenging to ignite through compression alone, particularly at low-load and cold starts conditions. This challenge arises from methanol's high octane number, low heating value, and high heat of vaporization, all of which collectively demand a substantial amount of heat for methanol to ignite through compression.
Technical Paper

Light Duty Engine Performance Characteristics with Dimethyl Ether and Propane

2024-04-09
2024-01-2126
The paper explores the performance characteristics of a compression ignition HYUNDAI 2.2L engine operating with Dimethyl Ether (DME). Test are carried out at three operating conditions that weigh heavily in the FTP75 certification cycle (1000rpm-12Nm, 1500rpm-50Nm, 2000rpm-100Nm). The engine features a high-pressure common rail fuel injection system designed to operate with liquified gases. The main component of the fuel system is a high-pressure pump that incorporates an electronic inlet metering valve commanded on a crank-angle base to control the rail pressure. The pump, which requires no pressure regulator, provides the flow needed to the injectors without flow returning to the inlet. This novel fueling system is leveraged in tests that are conducted to examine the impact of EGR, combustion phasing, injection pressure on efficiency and emissions. In addition, the impact of introducing 15% Propane by mass is examined.
Technical Paper

A Linear Quadratic Integral Approach to the Profiling of Engine Speed for Synchronization

2024-04-09
2024-01-2139
During driving conditions, when it is needed to transition from Electric Vehicle (EV) to Hybrid Vehicle operation, synchronization of the engine with the shaft and transmission is essential to enable clutch engagement and, subsequently, providing engine power to the wheels. Challenges arise when the engine must generate power to move itself and cannot rely on electric motors for precision. Cost-effective hybrid vehicle propulsion architectures which utilize small 12V belt-starter generators (BSGs) to initiate engine activation are inherently affected. In these situations, a speed profile that balance rapid response and control effort while considering system limitations to mitigate undesirable overshoots and delays, is required. This paper presents a Linear Quadratic Integral (LQI) approach to formulate a speed reference profile that ensures optimal engine behavior.
Technical Paper

Pre-Chamber Combustion System Development for an Ultra-Lean Gasoline Engine

2024-04-09
2024-01-2110
Amid rising demands for fuel efficiency and emissions reduction, enhancing the thermal efficiency of gasoline engines has become imperative, which requires higher efficiency combustion strategies and integrated optimized design to maximize the work output from fuel. In gasoline engine, both increasing the compression ratio and using lean burn mode improve the ratio of useful work output to the energy input effectively, which resulting in higher thermal efficiency. Although there is limited scope for increasing the compression ratio due to the higher sensitivity to knocking, especially under stoichiometric conditions, reduced sensitivity could be got with leaner mixture fill into cylinder, which can further increase the specific heat ratio and thermal efficiency.
Technical Paper

Simulation Study of Sparked-Spray Induced Combustion at Ultra-Lean Conditions in a GDI Engine

2024-04-09
2024-01-2107
Ultra-lean combustion of GDI engine could achieve higher thermal efficiency and lower NOx emissions, but it also faces challenges such as ignition difficulties and low-speed flame propagation. In this paper, the sparked-spray is proposed as a novel ignition method, which employs the spark to ignite the fuel spray by the cooperative timing control of in-cylinder fuel injection and spark ignition and form a jet flame. Then the jet flame fronts propagate in the ultra-lean premixed mixture in the cylinder. This combustion mode is named Sparked-Spray Induced Combustion (SSIC) in this paper. Based on a 3-cylinder 1.0L GDI engine, a 3D simulation model is established in the CONVERGE to study the effects of ignition strategy, compression ratio, and injection timing on SSIC with a global equivalence ratio of 0.50. The results show it is easier to form the jet flame when sparking at the spray front because the fuel has better atomization and lower turbulent kinetic energy at the spray front.
Technical Paper

Combustion and HC&PN Emission Characteristics at First Cycle Starting of Gasoline Engine under Lean Burn Based on Active Pre-Chamber

2024-04-09
2024-01-2108
As a novel ignition technology, pre-chamber ignition can enhance ignition energy, promote flame propagation, and augment turbulence. However, this technology undoubtedly faces challenges, particularly in the context of emission regulations. Of this study, the transient characteristics of combustion and emissions in a hybrid electric vehicle (HEV) gasoline engine with active pre-chamber ignition (PCI) under the first combustion cycle of quick start are focused. The results demonstrate that the PCI engine is available on the first cycle for lean combustion, such as lambda 1.6 to 2.0, and exhibit particle number (PN) below 7×107 N/mL at the first cycle. These particles are predominantly composed of nucleation mode (NM, <50 nm) particles, with minimal accumulation mode (AM, >50 nm) particles.
Technical Paper

Experimental Investigation of Pilot Injection Strategies to Aid Low Load Compression Ignition of Neat Methanol

2024-04-09
2024-01-2119
The growing demand to lower greenhouse gas emissions and transition from fossil fuels, has put methanol in the spotlight. Methanol can be produced from renewable sources and has the property of burning almost soot-free in compression ignition (CI) engines. Consequently, there has been a notable increase in research and development activities directed towards exploring methanol as a viable substitute for diesel fuel in CI engines. The challenge with methanol lies in the fact that it is difficult to ignite through compression alone, particularly in low-load and cold start conditions. This difficulty arises from methanol's high octane number, relatively low heating value, and high heat of vaporization, collectively demanding a considerable amount of heat for methanol to ignite through compression. Previous studies have addressed the use of a pilot injection in conjunction with a larger main injection to lower the required intake air temperature for methanol to combust at low loads.
Technical Paper

Combustion and Emission Characteristics of an Ammonia-Hydrogen Engine under Passive- and Active-Jet Ignition

2024-04-09
2024-01-2109
In the context of carbon neutrality, ammonia is considered a zero-carbon fuel with potential applications in the transportation sector. However, its high ignition energy, low flame speed, and high natural temperature, indicative of low reactivity, make it challenging to be applied as a sole fuel in engines. In such a scenario, the use of another zero-carbon and highly reactive fuel, hydrogen, becomes necessary to enhance the combustion of ammonia. Furthermore, jet ignition, a method known for improving engine combustion performance, may also hold potential for enhancing the combustion performance of ammonia engines. To explore the applicability of jet ignition in engines, this study conducted experimental research on a single-cylinder engine. Two ignition methods were employed: passive jet ignition of premixed ammonia-hydrogen at a compression ratio of 11.5, and active jet ignition of pure ammonia using hydrogen jet flame at a compression ratio of 17.3.
Technical Paper

Demonstration of Low Criteria Pollutant and Greenhouse Gas Emissions: Synergizing Vehicle Emission Reduction Technology and Lower Carbon Fuels

2024-04-09
2024-01-2121
This study focuses on evaluation of various fuels within a conventional gasoline internal combustion engine (ICE) vehicle and the implementation of advanced emissions reduction technology. It shows the robustness of the implemented technology packages for achieving ultra-low tailpipe emissions to different market fuels and demonstrates the potential of future GHG neutral powertrains enabled by drop-in lower carbon fuels (LCF). An ultra-low emission (ULE) sedan vehicle was set up using state-of-the-art engine technology, with advanced vehicle control and exhaust gas aftertreatment system including a prototype rapid catalyst heating (RCH) unit. Currently regulated criteria pollutant emission species were measured at both engine-out and tailpipe locations. Vehicle was run on three different drive cycles at the chassis dynamometer: two standard cycles (WLTC and TfL) at 20°C, and a real driving emission (RDE) cycle at -7°C.
Technical Paper

Comparison of the Predictive Capabilities of Chemical Kinetic Models for Hydrogen Combustion Applications

2024-04-09
2024-01-2116
Recent legislation banning the sale of new petrol and diesel vehicles in Europe from 2035 has shifted the focus of internal combustion engine research towards alternative fuels with net zero tailpipe emissions such as hydrogen. Research regarding hydrogen as a fuel is particularly pertinent to the so-called ‘hard-to-electrify’ propulsion applications, requiring a combination of large range, fast refuelling times or high-load duty cycles. The virtual design, development, and optimisation of hydrogen internal combustion engines has resulted in the necessity for accurate predictive modelling of the hydrogen combustion and autoignition processes. Typically, the models for these processes rely respectively on laminar flame speed datasets to calculate the rate of fuel burn as well as ignition delay time datasets to estimate autoignition timing. These datasets are generated using chemical kinetic mechanisms available in the literature.
Technical Paper

Consideration of Belt Losses of a Belt-Starter Generator(BSG)/Front-End Accessory Drive Electric Machine in an Optimal Torque Control Problem of a Hybrid Supervisory Controller

2024-04-09
2024-01-2157
As electrification of powertrains is progressing, diversification of hybrid powertrains increases. This generally imposes the challenge for a supervisory controller of how to optimally control the torque of the electric machine(s). Architectures, which have at least one belt driven electric machine, are an essential part of the portfolio. This paper describes a strategy on how to include the losses of the belt device in the determination of optimal electric machine torque command. It first depicts a physics-based method for controlling optimal electric machine torque command for systems without a belt connected electric machine. This method considers the constraints of the electric machine(s) as well as the power limitations from the electric devices, which supply power to the motors.
Technical Paper

Design Methodology for Efficient Electrified Powertrains Applied to Customer Technical Need Identification

2024-04-09
2024-01-2156
Radical greenhouse gases emissions reduction necessity is bringing deep evolution in mobility behaviors and is the core reason for a significant diversification of automotive powertrain technologies, making it more and more complex for customers to find the best suited technology. This paper proposes a customer-oriented approach that translates needs into technical requirements that can be used as choice guidelines. First, customers answer a small survey on their driving habits and the class of car they want. Real life driving cycles are then recorded, and Simulink simulations, based on lowest equivalent consumption calculations, allow to identify and size an ideal powertrain that can then become a benchmark for vehicle final selection.
Technical Paper

Reference Velocity Estimation with Variable Gain Based on Powertrain Dynamics for Production Hybrid Electric Vehicle

2024-04-09
2024-01-2147
Reference velocity (i.e. the absolute velocity of vehicle center of gravity) is a key parameter for vehicle stability control functions as well as for the powertrain control functions of hybrid electric vehicle (HEV). Most reference velocity estimation methods employ the vehicle kinematic and tire dynamic equations to construct high order linear or nonlinear model with a set of parameters and sensor measurements. When using those models, delicate algorithm should be designed to prevent the estimates from deviating along with the increase of nonlinearity, modeling error and noise that introduced by high order, parameter approximation, and sensor measurements, respectively. Alternatively, to improve the function robustness and calibration convenience, a straightforward online estimation method is developed in the paper by using a second-order powertrain dynamic model that only need a small set of vehicle parameters and sensor values.
X